Abstract

Origami robot is a hotspot for research in the field of soft robot. However, there are still some major limitations to their application. This study proposed an origami robot based on spherical-linkage parallel mechanism (SLPM) for realizing some functions that cannot be accomplished by conventional robots. This study designed the manufacturing and assembling processes for the SLPM section according to the needs of practical applications, to explore the influence of flexible hinge on the resistance of SLPM section to lateral and torsional forces, the finite element simulation of SLPM section was performed, and the physical model of SLPM section was made to conduct a series of experiment. Also, an origami robot based on SLPM was also made, and the motion form of the robot was explored by adams. At last, through establishing a mathematical model, the relationship for conversion between the two control modes of the robot was deduced. Based on this, an experiment on the bending angle of the robot was carried out, and the simulation results were compared. This paper will promote the research of origami robot in structure design, motion control, etc.

References

1.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
2.
Renda
,
F.
,
Cianchetti
,
M.
,
Giorelli
,
M.
,
Arienti
,
A.
, and
Laschi
,
C.
,
2012
, “
A 3D Steady-State Model of a Tendon-Driven Continuum Soft Manipulator Inspired by the Octopus Arm
,”
Bioinsp. Biomim.
,
7
(
2
), p.
025006
.
3.
Renda
,
F.
,
Giorelli
,
M.
,
Calisti
,
M.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2014
, “
Dynamic Model of a Multibending Soft Robot Arm Driven by Cables
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1109
1122
.
4.
Boyer
,
F.
,
Lebastard
,
V.
,
Candelier
,
F.
, and
Renda
,
F.
,
2020
, “
Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach
,”
IEEE Trans. Rob.
,
37
(
3
), pp.
847
863
.
5.
Nguyen
,
T.-D.
, and
Burgner-Kahrs
,
J.
,
2015
, “
A Tendon-Driven Continuum Robot With Extensible Sections
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
2130
2135
.
6.
Amanov
,
E.
,
Nguyen
,
T.-D.
, and
Burgner-Kahrs
,
J.
,
2019
, “
Tendon-Driven Continuum Robots With Extensible Sections—A Model-Based Evaluation of Path-Following Motions
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
7
23
.
7.
Lilge
,
S.
,
Nuelle
,
K.
,
Boettcher
,
G.
,
Spindeldreier
,
S.
, and
Burgner-Kahrs
,
J.
,
2021
, “
Tendon Actuated Continuous Structures in Planar Parallel Robots: A Kinematic Analysis
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011025
.
8.
Li
,
Z.
, and
Du
,
R.
,
2013
, “
Design and Analysis of a Bio-Inspired Wire-Driven Multi-section Flexible Robot
,”
Int. J. Adv. Rob. Syst.
,
10
(
4
), p.
209
.
9.
Li
,
L.
,
Jin
,
T.
,
Tian
,
Y.
,
Yang
,
F.
, and
Xi
,
F.
,
2019
, “
Design and Analysis of a Square-Shaped Continuum Robot With Better Grasping Ability
,”
IEEE Access
,
7
, pp.
57151
57162
.
10.
Qiu
,
C.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Repelling-Screw Based Force Analysis of Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031001
.
11.
Di Gregorio
,
R.
,
2003
, “
Inverse Position Analysis, Workspace Determination and Position Synthesis of Parallel Manipulators With 3-RSR Topology
,”
Robotica
,
21
(
6
), pp.
627
632
.
12.
Grosch
,
P.
,
Di Gregorio
,
R.
,
López
,
J.
, and
Thomas
,
F.
,
2010
, “
Motion Planning for a Novel Reconfigurable Parallel Manipulator With Lockable Revolute Joints
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–8
, pp.
4697
4702
.
13.
Di Gregorio
,
R.
,
2017
, “
Kinematics Analysis and Singularities of Novel Decoupled Parallel Manipulators With Simplified Architecture
,”
Robotica
,
35
(
4
), pp.
961
979
.
14.
Leonardis
,
D.
,
Solazzi
,
M.
,
Bortone
,
I.
, and
Frisoli
,
A.
,
2016
, “
A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces
,”
IEEE Trans. Haptic.
,
10
(
3
), pp.
305
316
.
15.
Mintchev
,
S.
,
Salerno
,
M.
,
Cherpillod
,
A.
,
Scaduto
,
S.
, and
Paik
,
J.
,
2019
, “
A Portable Three-Degrees-of-Freedom Force Feedback Origami Robot for Human–Robot Interactions
,”
Nat. Mach. Intell.
,
1
(
12
), pp.
584
593
.
16.
Falanga
,
D.
,
Kleber
,
K.
,
Mintchev
,
S.
,
Floreano
,
D.
, and
Scaramuzza
,
D.
,
2018
, “
The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
209
216
.
17.
Kirchgeorg
,
S.
, and
Mintchev
,
S.
,
2021
, “
HEDGEHOG: Drone Perching on Tree Branches With High-Friction Origami Spines
,”
IEEE Rob. Autom. Lett.
,
7
(
1
), pp.
602
609
.
18.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
19.
Rodriguez Leal
,
E.
, and
Dai
,
J. S.
,
2007
, “
From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
48094
,
Las Vegas, NV
,
Sept. 4–7
, pp.
1183
1193
.
20.
Ye
,
Q.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2022
, “
Variational Level Set Method for Topology Optimization of Origami Fold Patterns
,”
ASME J. Mech. Des.
,
144
(
8
), p.
081702
.
21.
Santoso
,
J.
,
Skorina
,
E. H.
,
Luo
,
M.
,
Yan
,
R.
, and
Onal
,
C. D.
,
2017
, “
Design and Analysis of an Origami Continuum Manipulation Module With Torsional Strength
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
,
Sept. 24–28
, pp.
2098
2104
.
22.
Santoso
,
J.
, and
Onal
,
C. D.
,
2020
, “
An Origami Continuum Robot Capable of Precise Motion Through Torsionally Stiff Body and Smooth Inverse Kinematics
,”
Soft Rob.
,
8
(
4
), pp.
371
386
.
23.
Mintchev
,
S.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2018
, “
Bioinspired Dual-Stiffness Origami
,”
Sci. Rob.
,
3
(
20
), p.
eaau0275
.
24.
Fang
,
H.
,
Zhang
,
Y.
, and
Wang
,
K. W.
,
2017
, “
Origami-Based Earthworm-Like Locomotion Robots
,”
Bioinsp. Biomim.
,
12
(
6
), p.
065003
.
25.
Shigemune
,
H.
,
Maeda
,
S.
,
Hara
,
Y.
, and
Hashimoto
,
S.
,
2014
, “
Design of Paper Mechatronics: Towards a Fully Printed Robot
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
536
541
.
26.
Shigemune
,
H.
,
Maeda
,
S.
,
Hara
,
Y.
,
Koike
,
U.
, and
Hashimoto
,
S.
,
2015
, “
Kirigami Robot: Making Paper Robot Using Desktop Cutting Plotter and Inkjet Printer
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
1091
1096
.
27.
Shigemune
,
H.
,
Maeda
,
S.
,
Hara
,
Y.
,
Hosoya
,
N.
, and
Hashimoto
,
S.
,
2016
, “
Origami Robot: A Self-Folding Paper Robot With an Electrothermal Actuator Created by Printing
,”
IEEE/ASME Trans. Mechatron.
,
21
(
6
), pp.
2746
2754
.
28.
Wu
,
S.
,
Ze
,
Q.
,
Dai
,
J.
,
Udipi
,
N.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2021
, “
Stretchable Origami Robotic Arm With Omnidirectional Bending and Twisting
,”
Proc. Natl. Acad. Sci.
,
118
(
36
), p.
e2110023118
.
29.
Ze
,
Q.
,
Wu
,
S.
,
Nishikawa
,
J.
,
Dai
,
J.
,
Sun
,
Y.
,
Leanza
,
S.
,
Zemelka
,
C.
,
Novelino
,
L. S.
,
Paulino
,
G. H.
, and
Zhao
,
R. R.
,
2022
, “
Soft Robotic Origami Crawler
,”
Sci. Adv.
,
8
(
13
), p.
eabm7834
.
30.
Ze
,
Q.
,
Wu
,
S.
,
Dai
,
J.
,
Leanza
,
S.
,
Ikeda
,
G.
,
Yang
,
P. C.
,
Iaccarino
,
G.
, and
Zhao
,
R. R.
,
2022
, “
Spinning-Enabled Wireless Amphibious Origami Millirobot
,”
Nat. Commun.
,
13
(
1
), p.
3118
.
31.
Kaufmann
,
J.
,
Bhovad
,
P.
, and
Li
,
S.
,
2022
, “
Harnessing the Multistability of Kresling Origami for Reconfigurable Articulation in Soft Robotic Arms
,”
Soft Rob.
,
9
(
2
), pp.
212
223
.
32.
Kim
,
S.-R.
,
Lee
,
D.-Y.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2016
, “
Fast, Compact, and Lightweight Shape-Shifting System Composed of Distributed Self-Folding Origami Modules
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
4969
4974
.
33.
Lee
,
D.-Y.
,
Kim
,
S.-R.
,
Kim
,
J.-S.
,
Park
,
J.-J.
, and
Cho
,
K.-J.
,
2017
, “
Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure
,”
Soft Rob.
,
4
(
2
), pp.
163
180
.
34.
Kim
,
S. J.
,
Lee
,
D. Y.
,
Jung
,
G. P.
, and
Cho
,
K. J.
,
2018
, “
An Origami-Inspired, Self-Locking Robotic Arm That Can Be Folded Flat
,”
Sci. Rob.
,
3
(
16
), p.
eaar2915
.
35.
Overvelde
,
J. T. B.
,
de Jong
,
T. A.
,
Shevchenko
,
Y.
,
Becerra
,
S. A.
,
Whitesides
,
G. M.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2016
, “
A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
(
1
), p.
10929
.
36.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2015
, “
Helical Kirigami-Enabled Centimeter-Scale Worm Robot With Shape-Memory-Alloy Linear Actuators
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021014
.
37.
Hu
,
F.
,
Wang
,
W.
,
Cheng
,
J.
, and
Bao
,
Y.
,
2020
, “
Origami Spring–Inspired Metamaterials and Robots: An Attempt at Fully Programmable Robotics
,”
Sci. Prog.
,
103
(
3
), p.
0036850420946162
.
38.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
,
2010
, “
Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031014
.
39.
Randlett
,
S.
,
1963
,
The Art of Origami: Paper Folding, Traditional and Modern
,
Faber & Faber
.
40.
Zhuang
,
Z.
,
Zhang
,
Z.
,
Guan
,
Y.
,
Wei
,
W.
,
Li
,
M.
,
Tang
,
Z.
,
Kang
,
R.
,
Song
,
Z.
, and
Dai
,
J. S.
,
2022
, “
Design and Control of SLPM-Based Extensible Continuum Arm
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
061003
.
41.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
.
42.
Dong
,
H.
,
Asadi
,
E.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2018
, “
Geometric Design Optimization of an Under-Actuated Tendon-Driven Robotic Gripper
,”
Rob. Comput. Integr. Manuf.
,
50
, pp.
80
89
.
43.
Zhuang
,
Z.
,
Zhang
,
Z.
,
Guan
,
Y.
,
Liu
,
Y.
,
Qin
,
E.
, and
Dai
,
J.
,
2022
, “
Control and Obstacle Avoidance for Deployable Robot Based on SLPM
,”
2022 5th International Conference on Robotics, Control and Automation Engineering (RCAE)
,
Changchun, China
,
Oct. 28–30
, pp.
191
194
.
44.
Wei
,
W.
,
Zhuang
,
Z. M.
,
Tang
,
Z.
, and
Dai
,
J. S.
,
2021
, “
Body Configuration Design and Kinematic Performance Research of Snake-Like Robot Based on 3-RSR Parallel Mechanism
,”
Chin. J. Mech. Eng.
,
57
(
23
), pp.
21
33
.
You do not currently have access to this content.