Abstract

This article proposes a novel thickness-accommodating method to design a void-free for flat-foldable origami pattern without self-intersection. Unlike existing methods, it enables uniform thickness distribution without any holes or voids at any location and maximizes the effective area of the unfolded state. The proposed method is applicable not only to 2D folding but also to a generic flat-foldable degree-4-vertex (D4V) pattern. The pattern's thickness-accommodated configuration to avoid self-intersection is determined through kinematic analysis, and a pattern design flow is provided for the generic D4V systematically. Prototypes of the D4V pattern and a more complex Miura-ori-based tessellation model are fabricated to demonstrate the effectiveness of the proposed method. This method can be employed in the design of more complete and diverse foldable structures, such as a foldable space shield with thick materials.

References

1.
Meloni
,
M.
,
Cai
,
J.
,
Zhang
,
Q.
,
Sang-Hoon Lee
,
D.
,
Li
,
M.
,
Ma
,
R.
,
Parashkevov
,
T. E.
, and
Feng
,
J.
,
2021
, “
Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools
,”
Adv. Sci.
,
8
(
13
), p.
2000636
.
2.
Turner
,
N.
,
Goodwine
,
B.
, and
Sen
,
M.
,
2016
, “
A Review of Origami Applications in Mechanical Engineering
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
14
), pp.
2345
2362
.
3.
Dureisseix
,
D.
,
2012
, “
An Overview of Mechanisms and Patterns With Origami
,”
Int. J. Space Struct.
,
27
(
1
), pp.
1
14
.
4.
Lee
,
D.-Y.
,
Kim
,
S.-R.
,
Kim
,
J.-S.
,
Park
,
J.-J.
, and
Cho
,
K.-J.
,
2017
, “
Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure
,”
Soft Robot.
,
4
(
2
), pp.
163
180
.
5.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
101
112
.
6.
Boyvat
,
M.
,
Koh
,
J.-S.
, and
Wood
,
R. J.
,
2017
, “
Addressable Wireless Actuation for Multijoint Folding Robots and Devices
,”
Sci. Robot.
,
2
(
8
), p.
eaan1544
.
7.
Liu
,
C.
,
Maiolino
,
P.
,
Yang
,
Y.
, and
You
,
Z.
,
2020
, “
Hybrid Soft-Rigid Deployable Structure Inspired by Thick-Panel Origami
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Online
,
Aug. 17–19
, American Society of Mechanical Engineers, p. V010T010A080.
8.
Suh
,
J.-E.
,
Miyazawa
,
Y.
,
Yang
,
J.
, and
Han
,
J.-H.
,
2022
, “
Self-Reconfiguring and Stiffening Origami Tube
,”
Adv. Eng. Mater.
,
24
(
5
), p.
2101202
.
9.
Johnson
,
M.
,
Chen
,
Y.
,
Hovet
,
S.
,
Xu
,
S.
,
Wood
,
B.
,
Ren
,
H.
,
Tokuda
,
J.
, and
Tse
,
Z. T. H.
,
2017
, “
Fabricating Biomedical Origami: A State-of-the-Art Review
,”
Int. J. Comput. Assist. Radiol. Surg.
,
12
(
11
), pp.
2023
2032
.
10.
Ghosh
,
A.
,
Yoon
,
C.
,
Ongaro
,
F.
,
Scheggi
,
S.
,
Selaru
,
F. M.
,
Misra
,
S.
, and
Gracias
,
D. H.
,
2017
, “
Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery
,”
Front. Mech. Eng.
,
3
(
7
), pp.
1
9
.
11.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.
12.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
13.
Kim
,
T.-H.
,
Suh
,
J.-E.
, and
Han
,
J.-H.
,
2021
, “
Deployable Truss Structure With Flat-Form Storability Using Scissor-Like Elements
,”
Mech. Mach. Theory
,
159
, p.
104252
.
14.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
15.
Munawar
,
H. S.
,
2020
, “
Reconfigurable Origami Antennas: A Review of the Existing Technology and Its Future Prospects
,”
Int. J. Wirel. Microw. Technol.
,
10
(
4
), pp.
34
38
.
16.
Suh
,
J.-E.
,
Kim
,
T.-H.
, and
Han
,
J.-H.
,
2021
, “
New Approach to Folding a Thin-Walled Yoshimura Patterned Cylinder
,”
J. Spacecr. Rockets
,
58
(
2
), pp.
516
530
.
17.
De Temmerman
,
I. A. N.
,
Mollaert
,
M.
,
Van Mele
,
I. A. T.
, and
De Laet
,
I. A. L.
,
2007
, “
Design and Analysis of a Foldable Mobile Shelter System
,”
Int. J. Space Struct.
,
22
(
3
), pp.
161
168
.
18.
Wilson
,
L.
,
Pellegrino
,
S.
, and
Danner
,
R.
,
2013
, “
Origami Sunshield Concepts for Space Telescopes
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–11
, p.
1594
.
19.
Arya
,
M.
,
Webb
,
D.
,
Bradford
,
S. C.
,
Adams
,
L.
,
Cormarkovic
,
V.
,
Wang
,
G.
,
Mobrem
,
M.
,
Neff
,
K.
,
Beidleman
,
N.
, and
Stienmier
,
J. D.
, “
Origami-Inspired Optical Shield for a Starshade Inner Disk Testbed: Design, Fabrication, and Analysis
,”
AIAA Scitech 2021 Forum
,
Online
,
Jan. 11–15 & 19–21
, p.
0904
.
20.
Vladislav
,
D.
, and
Becedas
,
J.
,
2020
,
Satellites Missions and Technologies for Geosciences
,
IntechOpen
,
London, UK
, pp.
73
90
.
21.
Cucinotta
,
F. A.
,
2014
, “
Space Radiation Risks for Astronauts on Multiple International Space Station Missions
,”
PLoS One
,
9
(
4
), p.
e96099
.
22.
Stassinopoulos
,
E.
, and
Raymond
,
J. P.
,
1988
, “
The Space Radiation Environment for Electronics
,”
Proc. IEEE
,
76
(
11
), pp.
1423
1442
.
23.
Durante
,
M.
,
2014
, “
Space Radiation Protection: Destination Mars
,”
Life Sci. Space Res.
,
1
, pp.
2
9
.
24.
Wilson
,
J.
,
Shinn
,
J.
,
Tripathi
,
R.
,
Singleterry
,
R.
,
Clowdsley
,
M.
,
Thibeault
,
S.
,
Cheatwood
,
F.
,
Schimmerling
,
W.
,
Cucinotta
,
F.
, and
Badhwar
,
G.
,
2001
, “
Issues in Deep Space Radiation Protection
,”
Acta Astronaut.
,
49
(
3–10
), pp.
289
312
.
25.
Naito
,
M.
,
Kodaira
,
S.
,
Ogawara
,
R.
,
Tobita
,
K.
,
Someya
,
Y.
,
Kusumoto
,
T.
,
Kusano
,
H.
,
Kitamura
,
H.
,
Koike
,
M.
, and
Uchihori
,
Y.
,
2020
, “
Investigation of Shielding Material Properties for Effective Space Radiation Protection
,”
Life Sci. Space Res.
,
26
, pp.
69
76
.
26.
Cha
,
J.-H.
,
Kumar
,
S. K. S.
,
Noh
,
J.-E.
,
Choi
,
J.-S.
,
Kim
,
Y.
, and
Kim
,
C.-G.
,
2022
, “
Ultra-High-Molecular-Weight Polyethylene/Hydrogen-Rich Benzoxazine Composite With Improved Interlaminar Shear Strength for Cosmic Radiation Shielding and Space Environment Applications
,”
Compos. Struct.
,
300
, p.
116157
.
27.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
28.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami
,
5
(
5
), pp.
253
264
.
29.
Lang
,
R. J.
,
Nelson
,
T.
,
Magleby
,
S.
, and
Howell
,
L.
,
2017
, “
Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021013
.
30.
Cai
,
J.
,
2016
, “
Kinematic Analysis of Foldable Plate Structures With Rolling Joints
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034502
.
31.
Sessions
,
J.
,
Pehrson
,
N.
,
Tolman
,
K.
,
Erickson
,
J.
,
Fullwood
,
D.
, and
Howell
,
L.
,
2016
, “
A Material Selection and Design Method for Multi-Constraint Compliant Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, American Society of Mechanical Engineers, p. V05AT07A013.
32.
Peraza Hernandez
,
E. A.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2016
, “
Kinematics of Origami Structures With Smooth Folds
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061019
.
33.
Ku
,
J. S.
, and
Demaine
,
E. D.
,
2016
, “
Folding Flat Crease Patterns With Thick Materials
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031003
.
34.
Yellowhorse
,
A.
,
Lang
,
R. J.
,
Tolman
,
K.
, and
Howell
,
L. L.
,
2018
, “
Creating Linkage Permutations to Prevent Self-Intersection and Enable Deployable Networks of Thick-Origami
,”
Sci. Rep.
,
8
(
1
), p.
12936
.
35.
Kawasaki
,
T.
,
1989
, “
On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami
,”
Proceedings of the First International Meeting of Origami Science and Technology
,
Ferrara, Italy
,
Dec. 6–7
.
36.
Hull
,
T.
,
1994
, “
On the Mathematics of Flat Origamis
,”
Congressus Numerantium
, pp.
215
224
.
37.
Brown
,
N. C.
,
Ynchausti
,
C.
,
Lytle
,
A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2022
, “
Approaches for Minimizing Joints in Single-Degree-of-Freedom Origami-Based Mechanisms
,”
ASME J. Mech. Des.
,
144
(
10
), p.
103301
.
38.
Gogu
,
G.
,
2005
, “
Chebychev–Grübler–Kutzbach's Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
,
24
(
3
), pp.
427
441
.
39.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spat. Struct.
,
50
(
3
), pp.
173
179
.
40.
Taylor
,
C. J.
, and
Kriegman
,
D. J.
,
1994
, “
Minimization on the Lie Group SO (3) and Related Manifolds
,”
Technical Report, No. 9405
.
41.
Tachi
,
T.
,
2010
, “
Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,”
Advances in Architectural Geometry 2010
,
Vienna, Austria
,
Sept. 18–21
, Springer, pp.
87
102
.
42.
Pehrson
,
N. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
An Origami-Based Thickness-Accommodating Bistable Mechanism in Monolithic Thick-Sheet Materials
,”
2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands
,
June 20–22
, IEEE, pp.
1
7
.
43.
Lang
,
R. J.
,
2017
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.