Abstract

This study proposes an inverse method for synthesizing shape-morphing structures in the lateral direction by integrating two-dimensional hexagonal unit cell with curved beams. Analytical expressions are derived to formulate the effective Young’s modulus and Poisson’s ratio for the base unit-cell as a function of its geometric parameters. The effective lateral Poisson’s ratio can be controlled by manipulating a set of geometric parameters, resulting in a dataset of over 6000 data points with Poisson’s ratio values ranging from −1.2 to 10.4. Furthermore, we utilize the established dataset to train an inverse design framework that utilizes a physics-guided neural network algorithm, and the framework can predict design parameters for a targeted shape-morphing structure. The proposed approach enables the generation of structures with tailored Poisson’s ratio ranging from −1.2 to 3.4 while ensuring flexibility and reduced stress concentration within the predicted structure. The generated shape-morphing structures’ performance is validated through numerical simulation and physical tensile testing. The finite element analysis (FEA) simulation results confirm agreement with the designed values for the shape-morphing structure, and the tensile testing results reveal the same trend in shape-morphing behavior. The proposed design automation framework demonstrates the feasibility of creating intricate and practical shape-morphing structures with high accuracy and computational efficiency.

References

1.
Skarsetz
,
O.
,
Slesarenko
,
V.
, and
Walther
,
A.
,
2022
, “
Programmable Auxeticity in Hydrogel Metamaterials Via Shape-Morphing Unit Cells
,”
Adv. Sci.
,
9
(
23
), p.
2201867
.
2.
Han
,
Z.
,
Wang
,
Z.
, and
Wei
,
K.
,
2022
, “
Shape Morphing Structures Inspired by Multi-Material Topology Optimized Bi-functional Metamaterials
,”
Compos. Struct.
,
300
, p.
116135
.
3.
Zhang
,
Z.
, and
Krushynska
,
A.
,
2022
, “
Programmable Shape-Morphing of Rose-Shaped Mechanical Metamaterials
,”
APL. Mater.
,
10
(
8
), p.
080701
.
4.
Wenz
,
F.
,
Schmidt
,
I.
,
Leichner
,
A.
,
Lichti
,
T.
,
Baumann
,
S.
,
Andrae
,
H.
, and
Eberl
,
C.
,
2021
, “
Designing Shape Morphing Behavior Through Local Programming of Mechanical Metamaterials
,”
Adv. Mater.
,
33
(
37
), p.
2008617
.
5.
Milton
,
G. W.
,
2022
,
The Theory of Composites
,
SIAM
,
Philadelphia, PA
.
6.
Liu
,
H.
,
Zhang
,
Q.
,
Zhang
,
K.
,
Hu
,
G.
, and
Duan
,
H.
,
2019
, “
Designing 3D Digital Metamaterial for Elastic Waves: From Elastic Wave Polarizer to Vibration Control
,”
Adv. Sci.
,
6
(
16
), p.
1900401
.
7.
Dudek
,
K. K.
,
Martínez
,
J. A. I.
,
Ulliac
,
G.
, and
Kadic
,
M.
,
2022
, “
Micro-Scale Auxetic Hierarchical Mechanical Metamaterials for Shape Morphing
,”
Adv. Mater.
,
34
(
14
), p.
2110115
.
8.
Guo
,
Q.
,
Pan
,
Y.
,
Lin
,
J.
,
Wan
,
G.
,
Xu
,
B.
,
Hua
,
N.
,
Zheng
,
C.
, et al.
2020
, “
Programmable 3D Self-Folding Structures With Strain Engineering
,”
Adv. Intell. Syst.
,
2
(
12
), p.
2000101
.
9.
Florijn
,
B.
,
Coulais
,
C.
, and
van Hecke
,
M.
,
2014
, “
Programmable Mechanical Metamaterials
,”
Phys. Rev. Lett.
,
113
(
17
), p.
175503
.
10.
Hu
,
F.
,
Wang
,
W.
,
Cheng
,
J.
, and
Bao
,
Y.
,
2020
, “
Origami Spring–Inspired Metamaterials and Robots: An Attempt at Fully Programmable Robotics
,”
Sci. Prog.
,
103
(
3
), p.
0036850420946162
.
11.
van Manen
,
T.
,
Janbaz
,
S.
, and
Zadpoor
,
A. A.
,
2018
, “
Programming the Shape-Shifting of Flat Soft Matter
,”
Mater. Today
,
21
(
2
), pp.
144
163
.
12.
van Manen
,
T.
,
Janbaz
,
S.
, and
Zadpoor
,
A. A.
,
2017
, “
Programming 2D/3D Shape-Shifting With Hobbyist 3D Printers
,”
Mater. Horiz.
,
4
(
6
), pp.
1064
1069
.
13.
Wang
,
Z.
,
Luan
,
C.
,
Liao
,
G.
,
Liu
,
J.
,
Yao
,
X.
, and
Fu
,
J.
,
2020
, “
Progress in Auxetic Mechanical Metamaterials: Structures, Characteristics, Manufacturing Methods, and Applications
,”
Adv. Eng. Mater.
,
22
(
10
), p.
2000312
.
14.
Mirzaali
,
M.
,
Janbaz
,
S.
,
Strano
,
M.
,
Vergani
,
L.
, and
Zadpoor
,
A. A.
,
2018
, “
Shape-Matching Soft Mechanical Metamaterials
,”
Sci. Rep.
,
8
(
1
), pp.
1
7
.
15.
Yang
,
H.
,
Wang
,
B.
, and
Ma
,
L.
,
2019
, “
Mechanical Properties of 3D Double-u Auxetic Structures
,”
Int. J. Solids. Struct.
,
180
, pp.
13
29
.
16.
Kadic
,
M.
,
Milton
,
G. W.
,
van Hecke
,
M.
, and
Wegener
,
M.
,
2019
, “
3D Metamaterials
,”
Nat. Rev. Phys.
,
1
(
3
), pp.
198
210
.
17.
Arridge
,
S.
,
Maass
,
P.
,
Öktem
,
O.
, and
Schönlieb
,
C.-B.
,
2019
, “
Solving Inverse Problems Using Data-Driven Models
,”
Acta Numer.
,
28
, pp.
1
174
.
18.
Yu
,
X.
,
Zhou
,
J.
,
Liang
,
H.
,
Jiang
,
Z.
, and
Wu
,
L.
,
2018
, “
Mechanical Metamaterials Associated With Stiffness, Rigidity and Compressibility: A Brief Review
,”
Prog. Mater. Sci.
,
94
, pp.
114
173
.
19.
Surjadi
,
J. U.
,
Gao
,
L.
,
Du
,
H.
,
Li
,
X.
,
Xiong
,
X.
,
Fang
,
N. X.
, and
Lu
,
Y.
,
2019
, “
Mechanical Metamaterials and Their Engineering Applications
,”
Adv. Eng. Mater.
,
21
(
3
), p.
1800864
.
20.
Novak
,
N.
,
Biasetto
,
L.
,
Rebesan
,
P.
,
Zanini
,
F.
,
Carmignato
,
S.
,
Krstulović-Opara
,
L.
,
Vesenjak
,
M.
, and
Ren
,
Z.
,
2021
, “
Experimental and Computational Evaluation of Tensile Properties of Additively Manufactured Hexa- and Tetrachiral Auxetic Cellular Structures
,”
Addit. Manuf.
,
45
, p.
102022
.
21.
Grima-Cornish
,
J. N.
,
Cauchi
,
R.
,
Attard
,
D.
,
Gatt
,
R.
, and
Grima
,
J. N.
,
2020
, “
Smart Honeycomb ‘Mechanical Metamaterials’ With Tunable Poisson’s Ratios
,”
Phys. Status Solidi (B)
,
257
(
10
), p.
1900707
.
22.
Nicolaou
,
Z. G.
, and
Motter
,
A. E.
,
2012
, “
Mechanical Metamaterials With Negative Compressibility Transitions
,”
Nat. Mater.
,
11
(
7
), pp.
608
613
.
23.
Hewage
,
T. A.
,
Alderson
,
K. L.
,
Alderson
,
A.
, and
Scarpa
,
F.
,
2016
, “
Double-Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson’s Ratio Properties
,”
Adv. Mater.
,
28
(
46
), pp.
10323
10332
.
24.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
Van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), pp.
1
11
.
25.
Wang
,
X.-T.
,
Wang
,
B.
,
Li
,
X.-W.
, and
Ma
,
L.
,
2017
, “
Mechanical Properties of 3D Re-Entrant Auxetic Cellular Structures
,”
Int. J. Mech. Sci.
,
131
, pp.
396
407
.
26.
Gao
,
Q.
,
Wang
,
L.
,
Zhou
,
Z.
,
Ma
,
Z.
,
Wang
,
C.
, and
Wang
,
Y.
,
2018
, “
Theoretical, Numerical and Experimental Analysis of Three-Dimensional Double-v Honeycomb
,”
Mater. Des.
,
139
, pp.
380
391
.
27.
Janbaz
,
S.
,
Hedayati
,
R.
, and
Zadpoor
,
A.
,
2016
, “
Programming the Shape-Shifting of Flat Soft Matter: From Self-Rolling/Self-Twisting Materials to Self-Folding Origami
,”
Mater. Horiz.
,
3
(
6
), pp.
536
547
.
28.
Hajiesmaili
,
E.
, and
Clarke
,
D. R.
,
2019
, “
Reconfigurable Shape-Morphing Dielectric Elastomers Using Spatially Varying Electric Fields
,”
Nat. Commun.
,
10
(
1
), pp.
1
7
.
29.
Alapan
,
Y.
,
Karacakol
,
A. C.
,
Guzelhan
,
S. N.
,
Isik
,
I.
, and
Sitti
,
M.
,
2020
, “
Reprogrammable Shape Morphing of Magnetic Soft Machines
,”
Sci. Adv.
,
6
(
38
), p.
eabc6414
.
30.
Gao
,
J.
,
Luo
,
Z.
,
Li
,
H.
, and
Gao
,
L.
,
2019
, “
Topology Optimization for Multiscale Design of Porous Composites With Multi-Domain Microstructures
,”
Comput. Methods. Appl. Mech. Eng.
,
344
, pp.
451
476
.
31.
Wang
,
Y.
,
Gao
,
J.
,
Luo
,
Z.
,
Brown
,
T.
, and
Zhang
,
N.
,
2017
, “
Level-Set Topology Optimization for Multimaterial and Multifunctional Mechanical Metamaterials
,”
Eng. Opt.
,
49
(
1
), pp.
22
42
.
32.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.
33.
Kingma
,
D. P.
, and
Welling
,
M.
,
2022
, “
Auto-Encoding Variational Bayes
,”
arXiv Preprint
. https://arxiv.org/abs/1312.6114
34.
Pahlavani
,
H.
,
Tsifoutis-Kazolis
,
K.
,
Mody
,
P.
,
Zhou
,
J.
,
Mirzaali
,
M. J.
, and
Zadpoor
,
A. A.
,
2022
, “
Deep Learning for Size-Agnostic Inverse Design of Random-Network 3D Printed Mechanical Metamaterials
,”
arXiv Preprint
. https://arxiv.org/abs/2212.12047
35.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods. Appl. Mech. Eng.
,
372
, p.
113377
.
36.
Mao
,
Y.
,
He
,
Q.
, and
Zhao
,
X.
,
2020
, “
Designing Complex Architectured Materials With Generative Adversarial Networks
,”
Sci. Adv.
,
6
(
17
), p.
eaaz4169
.
37.
Bastek
,
J.-H.
,
Kumar
,
S.
,
Telgen
,
B.
,
Glaesener
,
R. N.
, and
Kochmann
,
D. M.
,
2022
, “
Inverting the Structure–Property Map of Truss Metamaterials by Deep Learning
,”
Proc. Natl. Acad. Sci. USA
,
119
(
1
), p.
e2111505119
.
38.
Felsch
,
G.
,
Ghavidelnia
,
N.
,
Schwarz
,
D.
, and
Slesarenko
,
V.
,
2023
, “
Controlling Auxeticity in Curved-Beam Metamaterials via a Deep Generative Model
,”
Comput. Methods Appl. Mech. Eng.
,
410
, p.
116032
.
39.
Mukherjee
,
S.
, and
Adhikari
,
S.
,
2022
, “
The In-Plane Mechanics of a Family of Curved 2D Lattices
,”
Compos. Struct.
,
280
, p.
114859
.
40.
Gibson
,
L. J.
,
2003
, “
Cellular Solids
,”
Mrs Bull.
,
28
(
4
), pp.
270
274
.
41.
Adhikari
,
S.
,
Mukhopadhyay
,
T.
, and
Liu
,
X.
,
2021
, “
Broadband Dynamic Elastic Moduli of Honeycomb Lattice Materials: A Generalized Analytical Approach
,”
Mech. Mater.
,
157
, p.
103796
.
42.
Dawe
,
D.
,
1984
,
Matrix and Finite Element Displacement Analysis of Structures
,
Vol. 12
,
Oxford University Press
,
New York
.
43.
Abu-Mualla
,
M.
, and
Huang
,
J.
,
2023
, “
Inverse Design of 3D Cellular Materials With Physics-Guided Machine Learning
,”
Mater. Des.
,
232
, p.
112103
.
44.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
, et al
,
2016
, “
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
,”
arXiv Preprint
. https://arxiv.org/abs/1603.04467
45.
Kingma
,
D. P.
, and
Ba
,
J.
,
2017
, “
Adam: A Method for Stochastic Optimization
,”
arXiv Preprint
.https://arxiv.org/abs/1412.6980
46.
Aldrich
,
D. R.
,
Ayranci
,
C.
, and
Nobes
,
D. S.
,
2017
, “
Osm-Classic: An Optical Imaging Technique for Accurately Determining Strain
,”
SoftwareX
,
6
, pp.
225
230
.
You do not currently have access to this content.