Abstract
Design knowledge in the vast amount of design reports and documents can be an excellent resource for designers in their practice. However, capturing such domain-specific information embedded in long-length unstructured texts is always time-consuming and sometimes tricky. Therefore, it is highly desirable for a computer system to automatically extract the main knowledge points and their corresponding inner structures from given documents. In this study of document understanding for design support (DocUDS), a design-perspective knowledge extraction approach is proposed that uses phrase-level domain-specific labeled datasets to finetune a Bidirectional Encoder Representation from Transformers (BERT) model so that it can extract design knowledge from documents. The BERT model finetuning attempts to blend in the domain-specific knowledge of well-recognized domain concepts and is based on the datasets generated from design reports. The model is utilized to map the captured sentences to the main design entities <reguirement>, <function>, and <solution>. In addition, this approach uncovers inner relationships among the sentences and constructs overall structures of documents to enhance understanding. The definitions of design perspectives, inter-perspective relations, and intra-perspective relations are introduced, which together capture the main design knowledge points and their relations and constitute an understanding of the design domain knowledge of a text. The case study results have demonstrated the proposed approach's effectiveness in understanding and extracting relevant design knowledge points.