Abstract

The ensemble of surrogate models is commonly used to replace computationally expensive simulations due to their superior prediction accuracy and robustness compared to individual models. This paper proposes a new pointwise ensemble of surrogate models, namely, a pointwise-optimal ensemble of surrogate models (POEMs). To address the limitations of the cross-validation (CV) error in evaluating the performance of regression surrogate models, this paper introduces the compensated cross-validation error, which is more reliable in selecting better individual surrogate models and improving the accuracy of surrogate model ensembles. To overcome the limitations of CV error in calculating pointwise weight factors, this paper designs and solves an optimization problem at training points to obtain corresponding pointwise weight factors. Additionally, this paper proposes two weight calculation methods to be applied in the interpolation and extrapolation regions, respectively, to reduce the instability of ensembles caused by extrapolation. Thirty test functions are employed to investigate the appropriate hyperparameters of POEM and the Friedman test is used to verify the rationality of the α value. The thirty test functions are also used to examine the performance of POEM and compare it with state-of-the-art ensemble surrogate models. Furthermore, POEM is applied to a large-aperture mirror holder optimization case to verify its superiority. The results demonstrate that POEM presents better accuracy and robustness than individual surrogates and other compared ensembles of surrogate models.

References

1.
Jiang
,
C.
,
Qiu
,
H.
,
Yang
,
Z.
,
Chen
,
L.
,
Gao
,
L.
, and
Li
,
P.
,
2019
, “
A General Failure-Pursuing Sampling Framework for Surrogate-Based Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
183
, pp.
47
59
.
2.
Jung
,
Y.
,
Kang
,
K.
,
Cho
,
H.
, and
Lee
,
I.
,
2021
, “
Confidence-Based Design Optimization for a More Conservative Optimum Under Surrogate Model Uncertainty Caused by Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091701
.
3.
Lin
,
Q.
,
Zhou
,
Q.
,
Hu
,
J.
,
Cheng
,
Y.
, and
Hu
,
Z.
,
2022
, “
A Sequential Sampling Approach for Multi-Fidelity Surrogate Modeling-Based Robust Design Optimization
,”
ASME J. Mech. Des.
,
144
(
11
), p.
111703
.
4.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
.
5.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
,
2005
, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1077
1087
.
6.
Shi
,
M.
,
Lv
,
L.
,
Sun
,
W.
, and
Song
,
X.
,
2020
, “
A Multi-Fidelity Surrogate Model Based on Support Vector Regression
,”
Struct. Multidiscipl. Optim.
,
61
(
6
), pp.
2363
2375
.
7.
Liu
,
X.
,
Liu
,
X.
,
Zhou
,
Z.
, and
Hu
,
L.
,
2021
, “
An Efficient Multi-objective Optimization Method Based on the Adaptive Approximation Model of the Radial Basis Function
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1385
1403
.
8.
Mullur
,
A. A.
, and
Messac
,
A.
,
2005
, “
Extended Radial Basis Functions: More Flexible and Effective Metamodeling
,”
AIAA J.
,
43
(
6
), pp.
1306
1315
.
9.
Xu
,
H.
,
Zhang
,
W.
,
Zhou
,
N.
,
Xiao
,
L.
, and
Zhang
,
J.
,
2022
, “
An Active Learning Kriging Model With Adaptive Parameters for Reliability Analysis
,”
Eng. Comput.
,
2022
, pp.
1
18
.
10.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
.
11.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
,
43
(
4
), pp.
853
863
.
12.
Lim
,
D.
,
Ong
,
Y.-S.
,
Jin
,
Y.
, and
Sendhoff
,
B.
, 2007, “
A Study on Metamodeling Techniques, Ensembles, and Multi-Surrogates in Evolutionary Computation
,”
Proceedings of the Annual Conferences on Genetic Programming
,
London, UK
,
July 7–11
, ACM, pp.
1288
1295
.
13.
Zhou
,
X.
, and
Jiang
,
T.
,
2016
, “
Metamodel Selection Based on Stepwise Regression
,”
Struct. Multidiscipl. Optim.
,
54
(
3
), pp.
641
657
.
14.
Goel
,
T.
,
Haftka
,
R. T.
,
Shyy
,
W.
, and
Queipo
,
N. V.
,
2007
, “
Ensemble of Surrogates
,”
Struct. Multidiscipl. Optim.
,
33
(
3
), pp.
199
216
.
15.
Acar
,
E.
, and
Rais-Rohani
,
M.
,
2008
, “
Ensemble of Metamodels With Optimized Weight Factors
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), pp.
279
294
.
16.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Steffen
,
V.
,
2009
, “
Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidiscipl. Optim.
,
39
(
4
), pp.
439
457
.
17.
Zerpa
,
L. E.
,
Queipo
,
N. V.
,
Pintos
,
S.
, and
Salager
,
J.-L.
,
2005
, “
An Optimization Methodology of Alkaline–Surfactant–Polymer Flooding Processes Using Field Scale Numerical Simulation and Multiple Surrogates
,”
J. Pet. Sci. Eng.
,
47
(
3
), pp.
197
208
.
18.
Ferreira
,
W. G.
, and
Serpa
,
A. L.
,
2016
, “
Ensemble of Metamodels: The Augmented Least Squares Approach
,”
Struct. Multidiscipl. Optim.
,
53
(
5
), pp.
1019
1046
.
19.
Strömberg
,
N.
,
2021
, “
Comparison of Optimal Linear, Affine and Convex Combinations of Metamodels
,”
Eng. Optim.
,
53
(
4
), pp.
702
718
.
20.
Hu
,
J.
,
Peng
,
Y.
,
Lin
,
Q.
,
Liu
,
H.
, and
Zhou
,
Q.
,
2022
, “
An Ensemble Weighted Average Conservative Multi-Fidelity Surrogate Modeling Method for Engineering Optimization
,”
Eng. Comput.
,
38
(
3
), pp.
2221
2244
.
21.
Acar
,
E.
,
2010
, “
Various Approaches for Constructing an Ensemble of Metamodels Using Local Measures
,”
Struct. Multidiscipl. Optim.
,
42
(
6
), pp.
879
896
.
22.
Sanchez
,
E.
,
Pintos
,
S.
, and
Queipo
,
N. V.
,
2007
, “
Toward an Optimal Ensemble of Kernel-Based Approximations With Engineering Applications
,”
Struct. Multidiscipl. Optim.
,
36
(
3
), pp.
247
261
.
23.
Lee
,
Y.
, and
Choi
,
D.-H.
,
2014
, “
Pointwise Ensemble of Meta-Models Using v Nearest Points Cross-Validation
,”
Struct. Multidiscipl. Optim.
,
50
(
3
), pp.
383
394
.
24.
Zhang
,
J.
,
Chowdhury
,
S.
, and
Messac
,
A.
,
2012
, “
An Adaptive Hybrid Surrogate Model
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
223
238
.
25.
Song
,
X.
,
Lv
,
L.
,
Li
,
J.
,
Sun
,
W.
, and
Zhang
,
J.
,
2018
, “
An Advanced and Robust Ensemble Surrogate Model: Extended Adaptive Hybrid Functions
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041402
.
26.
Zhang
,
S.
,
Pang
,
Y.
,
Liang
,
P.
, and
Song
,
X.
,
2022
, “
On the Ensemble of Surrogate Models by Minimum Screening Index
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071707
.
27.
Pang
,
Y.
,
Wang
,
Y.
,
Sun
,
W.
, and
Song
,
X.
,
2022
, “
OTL-PEM: An Optimization-Based Two-Layer Pointwise Ensemble of Surrogate Models
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051702
.
28.
Zhou
,
C.
,
Zhang
,
H.
,
Chang
,
Q.
,
Song
,
X.
, and
Li
,
C.
,
2022
, “
An Adaptive Ensemble of Surrogate Models Based on Hybrid Measure for Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
65
(
1
), pp.
1
15
.
29.
Ye
,
P.
,
Pan
,
G.
, and
Dong
,
Z.
,
2018
, “
Ensemble of Surrogate Based Global Optimization Methods Using Hierarchical Design Space Reduction
,”
Struct. Multidiscipl. Optim.
,
58
(
2
), pp.
537
554
.
30.
Zhou
,
Q.
,
Wu
,
J.
,
Xue
,
T.
, and
Jin
,
P.
,
2021
, “
A Two-Stage Adaptive Multi-Fidelity Surrogate Model-Assisted Multi-objective Genetic Algorithm for Computationally Expensive Problems
,”
Eng. Comput.
,
37
(
1
), pp.
623
639
.
31.
Arlot
,
S.
, and
Celisse
,
A.
,
2010
, “
A Survey of Cross-Validation Procedures for Model Selection
,”
Stat. Surv.
,
4
, pp.
40
79
.
32.
Bishop
,
C. M.
,
1995
,
Neural Networks for Pattern Recognition
,
Oxford University Press
,
New York
,
364
369
.
33.
Viana
,
F. A.
, and
Goel
,
T.
,
2010
,
Surrogates Toolbox User’s Guide
,
Gainesville, FL
.
34.
Murlidhar
,
B. R.
,
Sinha
,
R. K.
,
Mohamad
,
E. T.
,
Sonkar
,
R.
, and
Khorami
,
M.
,
2020
, “
The Effects of Particle Swarm Optimisation and Genetic Algorithm on ANN Results in Predicting Pile Bearing Capacity
,”
IJHM
,
3
(
1
), pp.
69
87
.
35.
Sun
,
H.
,
2022
, “
A Particle Swarm Optimization and Coupled Generalized Differential Quadrature Element Methods With Genetic Algorithm for Stability Analysis of the Laminated Microsystems
,”
Eng. Comput.
,
38
(
4
), pp.
3251
3268
.
36.
Talgorn
,
B.
,
Le Digabel
,
S.
, and
Kokkolaras
,
M.
,
2015
, “
Statistical Surrogate Formulations for Simulation-Based Design Optimization
,”
J. Mech. Des.
,
137
(
2
), p.
21405
.
37.
An
,
J.
, and
Owen
,
A.
,
2001
, “
Quasi-Regression
,”
J. Complex.
,
17
(
4
), pp.
588
607
.
38.
Gramacy
,
R. B.
, and
Lee
,
H. K. H.
,
2010
, “
Cases for the Nugget in Modeling Computer Experiments
,”
Stat. Comput.
,
22
(
3
), pp.
713
722
.
39.
Mullur
,
A. A.
, and
Messac
,
A.
,
2006
, “
Metamodeling Using Extended Radial Basis Functions: A Comparative Approach
,”
Eng. Comput.
,
21
(
3
), pp.
203
217
.
40.
Park
,
J.-S.
,
1994
, “
Optimal Latin-Hypercube Designs for Computer Experiments
,”
J. Stat. Plan. Inference
,
39
(
1
), pp.
95
111
.
41.
Derrac
,
J.
,
García
,
S.
,
Molina
,
D.
, and
Herrera
,
F.
,
2011
, “
A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms
,”
Swarm Evol. Comput.
,
1
(
1
), pp.
3
18
.
You do not currently have access to this content.