Abstract

Triply period minimal surface (TPMS)-based porous microchannels with freeform surfaces are extensively used in various applications, e.g., bone scaffold design and thermal management. However, TPMS-based porous microchannels designed by most existing solutions are difficult to conform with the boundaries of freeform surfaces, and the integrity of the TPMS unit at the surface boundary is easily destroyed. Therefore, this work proposes a conformal design method for TPMS-based microchannels based on mesh surface conformal parameterization. A novel geometric structure, namely “quasi-quadrilateral,” is presented with this approach to control the size and shape of TPMS unit. Then, a design method of TPMS network topology in the 2D parametric domain of mesh surfaces is proposed to determine the positions of TPMS units. Based on this network topology, an algorithm to generate conformal TPMS units and TPMS-based microchannels is further presented. The result microchannels can automatically adapt to various freeform surfaces, and the quality of TPMS unit is greatly improved. Moreover, the effectiveness and practicability of the proposed approach are validated by comparative experimental studies with existing solutions.

References

1.
Liu
,
G.
,
Xiong
,
Y.
, and
Rosen
,
D. W.
,
2022
, “
Multidisciplinary Design Optimization in Design for Additive Manufacturing
,”
J. Comput. Des. Eng.
,
9
(
1
), pp.
128
143
.
2.
Feng
,
J.
,
Fu
,
J.
,
Yao
,
X.
, and
He
,
Y.
,
2022
, “
Triply Periodic Minimal Surface (TPMS) Porous Structures: From Multi-scale Design, Precise Additive Manufacturing to Multidisciplinary Applications
,”
Int. J. Extreme Manuf.
,
4
(
2
), p.
022001
.
3.
Adegoke
,
K. A.
, and
Maxakato
,
N. W.
,
2022
, “
Porous Metal Oxide Electrocatalytic Nanomaterials for Energy Conversion: Oxygen Defects and Selection Techniques
,”
Coord. Chem. Rev.
,
457
, p.
214389
.
4.
Wang
,
Y.
,
2007
, “
Periodic Surface Modeling for Computer Aided Nano Design
,”
Comput. Aided Des.
,
39
(
3
), pp.
179
189
.
5.
Liu
,
F.
,
Mao
,
Z.
,
Zhang
,
P.
,
Zhang
,
D. Z.
,
Jiang
,
J.
, and
Ma
,
Z.
,
2018
, “
Functionally Graded Porous Scaffolds in Multiple Patterns: New Design Method, Physical and Mechanical Properties
,”
Mater. Des.
,
160
, pp.
849
860
.
6.
Wang
,
S.
,
Shi
,
Z.
,
Liu
,
L.
,
Zhou
,
X.
,
Zhu
,
L.
, and
Hao
,
Y.
,
2020
, “
The Design of Ti6Al4V Primitive Surface Structure With Symmetrical Gradient of Pore Size in Biomimetic Bone Scaffold
,”
Mater. Des.
,
193
, p.
108830
.
7.
Liao
,
B.
,
Xia
,
R. F.
,
Li
,
W.
,
Lu
,
D.
, and
Jin
,
Z. M.
,
2021
, “
3D-Printed Ti6Al4V Scaffolds With Graded Triply Periodic Minimal Surface Structure for Bone Tissue Engineering
,”
J. Mater. Eng. Perform.
,
30
(
7
), pp.
4993
5004
.
8.
Li
,
D.
,
Dai
,
N.
,
Tang
,
Y.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2019
, “
Design and Optimization of Graded Cellular Structures With Triply Periodic Level Surface-Based Topological Shapes
,”
ASME J. Mech. Des.
,
141
(
7
), p.
071402
.
9.
Rastegarzadeh
,
S.
,
Wang
,
J.
, and
Huang
,
J.
,
2023
, “
Neural Network-Assisted Design: A Study of Multiscale Topology Optimization With Smoothly Graded Cellular Structures
,”
ASME J. Mech. Des.
,
145
(
1
), p.
011701
.
10.
Yang
,
N.
,
Du
,
C.
,
Wang
,
S.
,
Yang
,
Y.
, and
Zhang
,
C.
,
2016
, “
Mathematically Defined Gradient Porous Materials
,”
Mater. Lett.
,
173
, pp.
136
140
.
11.
Yoo
,
D.-J.
, and
Kim
,
K.-H.
,
2015
, “
An Advanced Multi-morphology Porous Scaffold Design Method Using Volumetric Distance Field and Beta Growth Function
,”
Int. J. Precis. Eng. Manuf.
,
16
(
9
), pp.
2021
2032
.
12.
Vijayavenkataraman
,
S.
,
Zhang
,
L.
,
Zhang
,
S.
,
Hsi Fuh
,
J. Y.
, and
Lu
,
W. F.
,
2018
, “
Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach Toward Biomimetic Scaffold Design
,”
ACS Appl. Bio Mater.
,
1
(
2
), pp.
259
269
.
13.
Ren
,
F.
,
Zhang
,
C.
,
Liao
,
W.
,
Liu
,
T.
,
Li
,
D.
,
Shi
,
X.
,
Jiang
,
W.
, et al
,
2021
, “
Transition Boundaries and Stiffness Optimal Design for Multi-TPMS Lattices
,”
Mater. Des.
,
210
, p.
110062
.
14.
Yoo
,
D.
,
2012
, “
Heterogeneous Minimal Surface Porous Scaffold Design Using the Distance Field and Radial Basis Functions
,”
Med. Eng. Phys.
,
34
(
5
), pp.
625
639
.
15.
Kim
,
J.
, and
Yoo
,
D.-J.
,
2020
, “
3D Printed Compact Heat Exchangers With Mathematically Defined Core Structures
,”
J. Comput. Des. Eng.
,
7
(
4
), pp.
527
550
.
16.
Yoo
,
D.-J.
,
2012
, “
Heterogeneous Porous Scaffold Design for Tissue Engineering Using Triply Periodic Minimal Surfaces
,”
Int. J. Precis. Eng. Manuf.
,
13
(
4
), pp.
527
537
.
17.
Fu
,
J.
,
Ding
,
J.
,
Zhang
,
L.
,
Qu
,
S.
,
Song
,
X.
, and
Fu
,
M. W.
,
2023
, “
Development of Conformal Shell Lattices Via Laser Powder Bed Fusion and Unraveling Their Mechanical Responses Via Modeling and Experiments
,”
Addit. Manuf.
,
62
, p.
103406
.
18.
Liu
,
Y.
,
Qu
,
Z.
, and
Li
,
Y.
,
2022
, “
Design Method of the Conformal Lattice Structures
,”
Adv. Eng. Mater.
,
24
(
8
), p.
2101423
.
19.
Zhao
,
M.
,
Ji
,
B.
,
Zhang
,
D. Z.
,
Li
,
H.
, and
Zhou
,
H.
,
2022
, “
Design and Mechanical Performances of a Novel Functionally Graded Sheet-Based Lattice Structure
,”
Addit. Manuf.
,
52
, p.
102676
.
20.
Oh
,
S.-H.
,
Ha
,
J.-W.
, and
Park
,
K.
,
2022
, “
Adaptive Conformal Cooling of Injection Molds Using Additively Manufactured TPMS Structures
,”
Polymers
,
14
(
1
), p.
181
.
21.
Feng
,
J.
,
Fu
,
J.
,
Shang
,
C.
,
Lin
,
Z.
, and
Li
,
B.
,
2018
, “
Porous Scaffold Design by Solid T-Splines and Triply Periodic Minimal Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
336
, pp.
333
352
.
22.
Feng
,
J.
,
Fu
,
J.
,
Shang
,
C.
,
Lin
,
Z.
, and
Li
,
B.
,
2019
, “
Sandwich Panel Design and Performance Optimization Based on Triply Periodic Minimal Surfaces
,”
Comput. Aided Des.
,
115
, pp.
307
322
.
23.
Hu
,
C.
, and
Lin
,
H.
,
2021
, “
Heterogeneous Porous Scaffold Generation Using Trivariate B-Spline Solids and Triply Periodic Minimal Surfaces
,”
Graph. Models
,
115
, p.
101105
.
24.
Xu
,
X.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2022
, “
Shape and Topology Optimization of Conformal Thermal Control Structures on Free-Form Surfaces: A Dimension Reduction Level Set Method (DR-LSM)
,”
Comput. Methods Appl. Mech. Eng.
,
398
, p.
115183
.
25.
Vogiatzis
,
P.
,
Ma
,
M.
,
Chen
,
S.
, and
Gu
,
X. D.
,
2018
, “
Computational Design and Additive Manufacturing of Periodic Conformal Metasurfaces by Synthesizing Topology Optimization With Conformal Mapping
,”
Comput. Methods Appl. Mech. Eng.
,
328
, pp.
477
497
.
26.
Hormann
,
K.
,
Polthier
,
K.
, and
She
,
A.
,
2008
, “
Mesh Parameterization: Theory and Practice
,”
SIGGRAPH '08: Special Interest Group on Computer Graphics and Interactive Techniques Conference
,
Singapore
,
Dec. 10–13
.
27.
Xu
,
C.
,
Li
,
J.
,
Wang
,
Q.
, and
Hu
,
G.
,
2019
, “
Contour Parallel Tool Path Planning Based on Conformal Parameterisation Utilising Mapping Stretch Factors
,”
Int. J. Prod. Res.
,
57
(
1
), pp.
1
15
.
28.
Sander
,
P. V.
,
Snyder
,
J.
,
Gortler
,
S. J.
, and
Hoppe
,
H.
,
2001
, “
Texture Mapping Progressive Meshes
,”
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH’01
,
Los Angeles, CA
,
Aug. 12–17
, ACM Press, pp.
409
416
.
29.
Li
,
J.
,
Xu
,
C.
, and
Wang
,
Q.
,
2020
, “
Distortion Compensation for Meshparameterization Mapping and Its Application in Freeform Surface Machining
,”
CAD & CG
,
32
(
9
), pp.
1519
1528
.
30.
Sheffer
,
A.
,
Lévy
,
B.
,
Mogilnitsky
,
M.
, and
Bogomyakov
,
A.
,
2005
, “
ABF++: Fast and Robust Angle Based Flattening
,”
ACM Trans. Graph.
,
24
(
2
), pp.
311
330
.
31.
Floater
,
M. S.
,
2003
, “
Mean Value Coordinates
,”
Comput. Aided Geom. Des.
,
20
(
1
), pp.
19
27
.
32.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
ACM SIGGRAPH Comput. Graph.
,
21
(
4
), pp.
163
169
.
33.
Wang
,
J.
,
Cai
,
Y.
,
Zhao
,
X.
, and
Zhang
,
C.
,
2014
, “
Thermal Design and Simulation of Automotive Headlamps Using White LEDs
,”
Microelectron. J.
,
45
(
2
), pp.
249
255
.
34.
Al-Ketan
,
O.
,
Rowshan
,
R.
, and
Abu Al-Rub
,
R. K.
,
2018
, “
Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials
,”
Addit. Manuf.
,
19
, pp.
167
183
.
You do not currently have access to this content.