Abstract

The layer-by-layer deposition process used in material extrusion (ME) additive manufacturing results in inter- and intra-layer bonds that reduce the mechanical performance of printed parts. Multi-axis (MA) ME techniques have shown potential for mitigating this issue by enabling tailored deposition directions based on loading conditions in three dimensions (3D). Planning deposition paths leveraging this capability remains a challenge, as an intelligent method for assigning these directions does not exist. Existing literature has introduced topology optimization (TO) methods that assign material orientations to discrete regions of a part by simultaneously optimizing material distribution and orientation. These methods are insufficient for MA–ME, as the process offers additional freedom in varying material orientation that is not accounted for in the orientation parameterizations used in those methods. Additionally, optimizing orientation design spaces is challenging due to their non-convexity, and this issue is amplified with increased flexibility; the chosen orientation parameterization heavily impacts the algorithm’s performance. Therefore, the authors (i) present a TO method to simultaneously optimize material distribution and orientation with considerations for 3D material orientation variation and (ii) establish a suitable parameterization of the orientation design space. Three parameterizations are explored in this work: Euler angles, explicit quaternions, and natural quaternions. The parameterizations are compared using two benchmark minimum compliance problems, a 2.5D Messerschmitt–Bölkow–Blohm beam and a 3D Wheel, and a multi-loaded structure undergoing (i) pure tension and (ii) three-point bending. For the Wheel, the presented algorithm demonstrated a 38% improvement in compliance over an algorithm that only allowed planar orientation variation. Additionally, natural quaternions maintain the well-shaped design space of explicit quaternions without the need for unit length constraints, which lowers computational costs. Finally, the authors present a path toward integrating optimized geometries and material orientation fields resulting from the presented algorithm with MA–ME processes.

References

1.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, 2nd ed.,
Springer
,
New York
.
2.
Seppala
,
J. E.
, and
Migler
,
K. D.
,
2016
, “
Infrared Thermography of Welding Zones Produced by Polymer Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
12
(
October
), pp.
71
76
.
3.
Bellehumeur
,
C.
,
Li
,
L.
,
Sun
,
Q.
, and
Gu
,
P.
,
2004
, “
Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process
,”
J. Manuf. Processes
,
6
(
2
), pp.
170
178
. 10.1016/S1526-6125(04)70071-7
4.
Ahn
,
S.-H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
5.
Mulholland
,
T.
,
Goris
,
S.
,
Boxleitner
,
J.
,
Osswald
,
T.
, and
Rudolph
,
N.
,
2018
, “
Process-Induced Fiber Orientation in Fused Filament Fabrication
,”
J. Compos. Sci.
,
2
(
3
), p.
45
. 10.3390/jcs2030045
6.
Rodríguez
,
J. F.
,
Thomas
,
J. P.
, and
Renaud
,
J. E.
,
2003
, “
Design of Fused-Deposition ABS Components for Stiffness and Strength
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
545
551
. 10.1115/1.1582499
7.
Ulu
,
E.
,
Korkmaz
,
E.
,
Yay
,
K.
,
Burak Ozdoganlar
,
O.
, and
Burak Kara
,
L.
,
2015
, “
Enhancing the Structural Performance of Additively Manufactured Objects Through Build Orientation Optimization
,”
ASME J. Mech. Des.
,
137
(
11
), pp.
1
9
.
8.
Prüß
,
H.
, and
Vietor
,
T.
,
2015
, “
Design for Fiber-Reinforced Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), pp.
1
7
.
9.
Yerazunis
,
W. S.
,
Barnwell
,
J. C. I.
, and
Nikovski
,
D. N.
,
2016
, “
Strengthening ABS, Nylon, and Polyester 3D Printed Parts by Stress Tensor Aligned Deposition Paths and Five-Axis Printing
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
1259
1271
.
10.
Kubalak
,
J. R.
,
Wicks
,
A. L.
, and
Williams
,
C. B.
,
2018
, “
Using Multi-Axis Material Extrusion to Improve Mechanical Properties Through Surface Reinforcement
,”
Virtual Phys. Prototyping
,
13
(
1
), pp.
32
38
. 10.1080/17452759.2017.1392686
11.
Tam
,
K.-M. M.
, and
Mueller
,
C. T.
,
2017
, “
Additive Manufacturing Along Principal Stress Lines
,”
3D Print. Addit. Manuf.
,
4
(
2
), pp.
63
81
. 10.1089/3dp.2017.0001
12.
Chakraborty
,
D.
,
Reddy
,
B. A.
, and
Choudhury
,
A. R.
,
2008
, “
Extruder Path Generation for Curved Layer Fused Deposition Modeling
,”
Comput.-Aided Des.
,
40
(
2
), pp.
235
243
. 10.1016/j.cad.2007.10.014
13.
Singamneni
,
S.
,
Roychoudhury
,
A.
,
Diegel
,
O.
, and
Huang
,
B.
,
2012
, “
Modeling and Evaluation of Curved Layer Fused Deposition
,”
J. Mater. Process. Tech.
,
212
(
1
), pp.
27
35
. 10.1016/j.jmatprotec.2011.08.001
14.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
New York
.
15.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Bridging Topology Optimization and Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
175
192
.
16.
Liu
,
J.
,
Gaynor
,
A. T.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
,
Kato
,
J.
,
Tang
,
J.
,
Wang
,
C. C.
,
Cheng
,
L.
,
Liang
,
X.
, and
To
,
A. C.
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
57
(
6
), pp.
2457
2483
. 10.1007/s00158-018-1994-3
17.
Gaynor
,
A. T.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1157
1172
. 10.1007/s00158-016-1551-x
18.
Guo
,
X.
,
Zhou
,
J.
,
Zhang
,
W.
,
Du
,
Z.
,
Liu
,
C.
, and
Liu
,
Y.
,
2017
, “
Self-Supporting Structure Design in Additive Manufacturing Through Explicit Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
27
63
. 10.1016/j.cma.2017.05.003
19.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
. 10.1002/nme.1064
20.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
. 10.1115/1.4028439
21.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design As a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
22.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
. 10.1016/0045-7825(91)90046-9
23.
Michell
,
A.
,
1904
, “
The Limits of Economy of Material in Frame-Structures
,”
Philos. Mag. Ser. 6
,
8
(
47
), pp.
589
597
. 10.1080/14786440409463229
24.
Cheng
,
H. C.
,
Kikuchi
,
N.
, and
Ma
,
Z. D.
,
1994
, “
An Improved Approach for Determining the Optimal Orientation of Orthotropic Material
,”
Struct. Optim.
,
8
(
2–3
), pp.
101
112
. 10.1007/BF01743305
25.
Li
,
Y.
, and
Chen
,
Y.
,
2010
, “
Beam Structure Optimization for Additive Manufacturing Based on Principal Stress Lines
,”
21st Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
666
678
.
26.
Pedersen
,
P.
,
1989
, “
On Optimal Orientation of Orthotropic Materials
,”
Struct. Optim.
,
1
(
2
), pp.
101
106
. 10.1007/BF01637666
27.
Zhou
,
K.
, and
Li
,
X.
,
2006
, “
Topology Optimization of Structures Under Multiple Load Cases Using a Fiber-Reinforced Composite Material Model
,”
Comput. Mech.
,
38
(
2
), pp.
163
170
. 10.1007/s00466-005-0735-9
28.
Díaz
,
A. R.
, and
Bendsøe
,
M. P.
,
1992
, “
Shape Optimization of Structures for Multiple Loading Conditions Using a Homogenization Method
,”
Struct. Optim.
,
4
(
1
), pp.
17
22
. 10.1007/BF01894077
29.
Nomura
,
T.
,
Dede
,
E. M.
,
Lee
,
J.
,
Yamasaki
,
S.
,
Matsumori
,
T.
,
Kawamoto
,
A.
, and
Kikuchi
,
N.
,
2015
, “
General Topology Optimization Method With Continuous and Discrete Orientation Design Using Isoparametric Projection
,”
Int. J. Numer. Methods Eng.
,
101
(
8
), pp.
571
605
. 10.1002/nme.4799
30.
Bruyneel
,
M.
, and
Fleury
,
C.
,
2002
, “
Composite Structures Optimization Using Sequential Convex Programming
,”
Adv. Eng. Software
,
33
(
7–10
), pp.
697
711
. 10.1016/S0965-9978(02)00053-4
31.
Lindgaard
,
E.
, and
Lund
,
E.
,
2011
, “
Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures
,”
Struct. Multidiscip. Optim.
,
43
(
5
), pp.
631
646
. 10.1007/s00158-010-0593-8
32.
Setoodeh
,
S.
,
Abdalla
,
M. M.
, and
Gürdal
,
Z.
,
2005
, “
Combined Topology and Fiber Path Design of Composite Layers Using Cellular Automata
,”
Struct. Multidiscip. Optim.
,
30
(
6
), pp.
413
421
. 10.1007/s00158-005-0528-y
33.
Ansola
,
R.
,
Canales
,
J.
,
Tarrago
,
J. A.
, and
Rasmussen
,
J.
,
2002
, “
On Simultaneous Shape and Material Layout Optimization of Shell Structures
,”
Struct. Multidiscip. Optim.
,
24
(
3
), pp.
175
184
. 10.1007/s00158-002-0227-x
34.
Hoglund
,
R.
, and
Smith
,
D. E.
,
2016
, “
Continuous Fiber Angle Topology Optimization for Polymer Fused Filament Fabrication
,”
27th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, Vol.
1
, pp.
1078
1090
.
35.
Boddeti
,
N.
,
Ding
,
Z.
,
Kaijima
,
S.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2018
, “
Simultaneous Digital Design and Additive Manufacture of Structures and Materials
,”
Sci. Rep.
,
8
, pp.
1
10
.
36.
Sørensen
,
S. N.
, and
Lund
,
E.
,
2013
, “
Topology and Thickness Optimization of Laminated Composites Including Manufacturing Constraints
,”
Struct. Multidiscip. Optim.
,
48
(
2
), pp.
249
265
. 10.1007/s00158-013-0904-y
37.
Wu
,
C.
,
Gao
,
Y.
,
Fang
,
J.
,
Lund
,
E.
, and
Li
,
Q.
,
2017
, “
Discrete Topology Optimization of Ply Orientation for a Carbon Fiber Reinforced Plastic (CFRP) Laminate Vehicle Door
,”
Mater. Des.
,
128
, pp.
9
19
. 10.1016/j.matdes.2017.04.089
38.
Wu
,
C.
,
Gao
,
Y.
,
Fang
,
J.
,
Lund
,
E.
, and
Li
,
Q.
,
2019
, “
Simultaneous Discrete Topology Optimization of Ply Orientation and Thickness for Carbon Fiber Reinforced Plastic-Laminated Structures
,”
ASME J. Mech. Des.
,
141
, p.
044501
.
39.
Zowe
,
J.
,
Kocvara
,
M.
, and
Bendsoe
,
M. P.
,
1997
, “
Free Material Optimization Via Mathematical Programming
,”
Math. Program. Ser. B
,
79
, pp.
445
466
.
40.
Kocvara
,
M.
,
Stingl
,
M.
, and
Zowe
,
J.
,
2008
, “
Free Material Optimization: Recent Progress
,”
Optimization
,
57
(
1
), pp.
79
100
. 10.1080/02331930701778908
41.
Katsuki
,
S.
, and
Sebe
,
N.
,
2015
, “
Rotation Matrix Optimization With Quaternion
,”
2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC 2015
,
Kota Kinabalu, Malaysia
.
42.
Phillips
,
W. F.
,
Hailey
,
C. E.
, and
Gebert
,
G. A.
,
2001
, “
Review of Attitude Representations Used for Aircraft Kinematics
,”
J. Aircraft
,
38
(
4
), pp.
718
737
. 10.2514/2.2824
43.
Schmidt
,
J.
, and
Niemann
,
H.
,
2001
, “
Using Quaternions for Parametrizing 3-D Rotations in Unconstrained Nonlinear Optimization
,”
Vision, Modeling, and Visualization
,
Stuttgart, Germany
, pp.
399
406
.
44.
Dam
,
E. B.
,
Koch
,
M.
, and
Lillholm
,
M.
,
1998
, “Quaternions, Interpolation and Animation,” Technical Report, University of Copenhagen.
45.
Diebel
,
J.
,
2006
, “Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors,” Technical Report, Stanford University.
46.
Shoemake
,
K.
,
1985
, “
Animating Rotation With Quaternion Curves
,”
ACM SIGGRAPH Computer Graphics
,
San Francisco, CA
, Vol.
19
, pp.
245
254
.
47.
Duysinx
,
P.
, and
Bendsøe
,
M. P.
,
1998
, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
43
(
8
), pp.
1453
1478
.
48.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J. W.
,
2002
,
Concept and Applications of Finite Element Analysis
,
John Wiley & Sons
,
Hoboken, NJ
.
49.
Rozvany
,
G. I. N.
,
1998
, “
Exact Analytical Solutions for Some Popular Benchmark Problems in Topology Optimization
,”
Struct. Optim.
,
15
(
1
), pp.
42
48
. 10.1007/BF01197436
50.
Gogu
,
C.
,
2015
, “
Improving the Efficiency of Large Scale Topology Optimization Through On-the-Fly Reduced Order Model Construction
,”
Int. J. Numer. Methods Eng.
,
101
(
4
), pp.
281
304
. 10.1002/nme.4797
51.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes – A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
. 10.1002/nme.1620240207
52.
Díaz
,
A.
, and
Sigmund
,
O.
,
1995
, “
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
,
10
(
1
), pp.
40
45
. 10.1007/BF01743693
53.
Guest
,
J. K.
,
Asadpoure
,
A.
, and
Ha
,
S. H.
,
2011
, “
Eliminating Beta-Continuation From Heaviside Projection and Density Filter Algorithms
,”
Struct. Multidiscip. Optim.
,
44
(
4
), pp.
443
453
. 10.1007/s00158-011-0676-1
54.
Svanberg
,
K.
,
2007
, “MMA and GCMMA – Two Methods for Nonlinear Optimization,” Technical Report, KTH.
55.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
. 10.1007/s00158-013-0978-6
56.
Kubalak
,
J. R.
,
Wicks
,
A. L.
, and
Williams
,
C. B.
,
2019
, “
Exploring Multi-Axis Material Extrusion Additive Manufacturing for Improving Mechanical Properties of Printed Parts
,”
Rapid Prototyping J.
,
25
(
2
), pp.
356
362
. 10.1108/RPJ-02-2018-0035
57.
Kubalak
,
J. R.
,
Mansfield
,
C. D.
,
Pesek
,
T. H.
,
Snow
,
Z. K.
,
Cottiss
,
E. B.
,
Ebeling-koning
,
O. D.
,
Price
,
M. G.
,
Traverso
,
M. H.
,
Tichnell
,
L. D.
,
Williams
,
C. B.
, and
Wicks
,
A. L.
,
2016
, “
Design and Realization of a ° of Freedom Robotic Extrusion Platform
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
1314
1332
.
58.
Kubalak
,
J. R.
,
Wicks
,
A. L.
, and
Williams
,
C. B.
,
2019
, “
Deposition Path Planning for Material Extrusion Using Specified Orientation Fields
,”
47th SME North American Manufacturing Research Conference
,
Erie, PA
, Elsevier, pp.
1
10
.
59.
McLoughlin
,
T.
,
Laramee
,
R. S.
,
Peikert
,
R.
,
Post
,
F. H.
, and
Chen
,
M.
,
2010
, “
Over Two Decades of Integration-Based, Geometric Flow Visualization
,”
Comput. Graph. Forum
,
29
(
6
), pp.
1807
1829
. 10.1111/j.1467-8659.2010.01650.x
You do not currently have access to this content.