Abstract

Predicting the behavior or response for complicated dynamical systems during their operation may require high-fidelity and computationally costly simulations. Because of the high computational cost, such simulations are generally done offline. The offline simulation data can then be combined with sensors measurement data for online, operational prediction of the system's behavior. In this paper, a generic online data-driven approach is proposed for the prediction of spatio-temporal behavior of dynamical systems using their simulation data combined with sparse, noisy sensors measurement data. The approach relies on an offline–online approach and is based on an integration of dimension reduction, surrogate modeling, and data assimilation techniques. A step-by-step application of the proposed approach is demonstrated by a simple numerical example. The performance of the approach is also evaluated by a case study which involves predicting aeroelastic response of a joined-wing aircraft in which sensors are sparsely placed on its wing. Through this case study, it is shown that the results obtained from the proposed spatio-temporal prediction technique have comparable accuracy to those from the high-fidelity simulation, while at the same time significant reduction in computational expense is achieved. It is also shown that, for the case study, the proposed approach has a prediction accuracy that is relatively robust to the sensors’ locations.

References

1.
Darema
,
F.
,
2004
,
Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements.
,
Lecture Notes in Computer Science
, Vol.
3038
,
Comput. Sci.-ICCS 2004.
,
Berlin, Heidelberg
, pp.
662
669
.
2.
Fisher
,
M.
,
Nocedal
,
J.
,
Trémolet
,
Y.
, and
Wright
,
S. J.
,
2009
, “
Data Assimilation in Weather Forecasting: A Case Study in PDE-Constrained Optimization
,”
Optim. Eng.
,
10
(
3
), pp.
409
426
. 10.1007/s11081-008-9051-5
3.
Mandel
,
J.
,
Bennethum
,
L.
,
Beezley
,
J.
,
Coen
,
J.
,
Douglas
,
C.
,
Kim
,
M.
, and
Vodacek
,
A.
,
2008
, “
A Wildland Fire Model With Data Assimilation
,”
Math. Comput. Simul.
,
79
(
3
), pp.
584
606
. 10.1016/j.matcom.2008.03.015
4.
Rodriguez
,
R.
,
Cortés
,
A.
, and
Margalef
,
T.
,
2009
,
Injecting Dynamic Real-Time Data into a DDDAS for Forest Fire Behavior Prediction
,
Lecture Notes in Computer Science
, Vol.
5545
,
International Conference on Computer Science
,
Springer, Berlin, Heidelberg
, pp.
489
499
.
5.
Akcelik
,
V.
,
Biros
,
G.
,
Draganescu
,
A.
,
Ghattas
,
O.
,
Hill
,
J.
, and
Van Bloeman Waanders
,
B.
,
2005
, “
Dynamic Data-Driven Inversion for Terascale Simulations: Real-Time Identification of Airborne Contaminants
,”
Proceedings of the 2005 ACM/IEEE Conference on Supercomputing
,
Seattle, WA
,
Nov. 12–18
.
6.
Lieberman
,
C.
,
Fidkowski
,
K. W.
, and
Van Bloemen Waanders
,
B.
,
2013
, “
Hessian-Based Model Reduction: Largescale Inversion and Prediction
,”
Int. J. Numer. Methods Fluids
,
71
(
2
), pp.
135
150
. 10.1002/fld.3650
7.
Akcelik
,
V.
,
Biros
,
G.
,
Draganescu
,
A.
,
Ghattas
,
O.
, and
Hill
,
J.
,
2006
,
Inversion of Airborne Contaminants in a Regional Model
,
Lecture Notes in Computer Science
, Vol.
3993
,
Int. Conf. Comput. Sci. (ICCS)
,
Springer, Berlin, Heidelberg
, pp.
481
488
.
8.
Madey
,
G. R.
,
M. B.
Blake
,
C.
Poellabauer
,
H.
Lu
,
R. R.
McCune
, and
Y.
Wei
(
2012
). “
Applying DDDAS Principles to Command, Control and Mission Planning for UAV Swarms
.”
Procedia Comput. Sci.
,
9
:
1177−
1186
. 10.1016/j.procs.2012.04.127
9.
Peng
,
L.
,
Doug
,
L.
, and
Kamran
,
M.
,
2014
, “
Dynamic Data Driven Application System for Plume Estimation Using UAVs
,”
J. Intell. Robot. Syst.
,
74
(
1–2
), pp.
421
436
. 10.1007/s10846-013-9964-x
10.
Khaleghi
,
A. M.
,
Xu
,
D.
,
Lobos
,
A.
,
Minaeian
,
S.
,
Son
,
Y.-J.
, and
Liu
,
J.
,
2013
, “
Agent-Based Hardware-in-the-Loop Simulation for UAV/UGV Surveillance and Crowd Control System
,”
Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World
,
Washington, DC
,
Dec. 8–11
, IEEE Press, pp.
1455
1466
.
11.
Uzkent
,
B.
,
Hoffman
,
M. J.
,
Vodacek
,
A.
,
Kerekes
,
J. P.
, and
Chen
,
B.
,
2013
, “
Feature Matching and Adaptive Prediction Models in an Object Tracking DDDAS
,”
Procedia Comput. Sci.
,
18
, pp.
1939
1948
. 10.1016/j.procs.2013.05.363
12.
Wei
,
X.
, and
Du
,
X.
,
2019
, “
Uncertainty Analysis for Time- and Space-Dependent Responses With Random Variables
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021402
. 10.1115/1.4041429
13.
Xi
,
Z.
,
Youn
,
B. D.
, and
Hu
,
C.
,
2010
, “
Random Field Characterization Considering Statistical Dependence for Probability Analysis and Design
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101008
. 10.1115/1.4002293
14.
Beek
,
A. V.
,
Li
,
M.
, and
Ren
,
C.
,
2018
, “
Heuristics-Enhanced Model Fusion Considering Incomplete Data Using Kriging Models
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021403
. 10.1115/1.4038596
15.
Yin
,
X.
,
Lee
,
S.
,
Chen
,
W.
,
Liu
,
W. K.
, and
Horstemeyer
,
M. F.
,
2009
, “
Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021006
. 10.1115/1.3042159
16.
Peddada
,
S. R.
,
Tannous
,
P. J.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2020
, “
Optimal Sensor Placement Methods in Active High Power Density Electronic Systems With Experimental Validation
,”
ASME J. Mech. Des.
,
142
(
2
), p.
023501
. 10.1115/1.4044744
17.
Box
,
G. E.
, and
Pierce
,
D. A.
,
1970
, “
Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models
,”
J. Am. Stat. Assoc.
,
65
(
332
), pp.
1509
1526
. 10.1080/01621459.1970.10481180
18.
Fu
,
R.
,
Zhang
,
Z.
, and
Li
,
L.
,
2016
, “
Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction.
2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC)
,
Wuhan, China
,
Nov. 11–13
.
19.
Min
,
W.
, and
Laura
,
W.
,
2011
, “
Real-time Road Traffic Prediction with Spatio-Temporal Correlations
,”
Transp. Res. Part C: Emerg. Technol.
,
19
(
4
), pp.
606
616
. 10.1016/j.trc.2010.10.002
20.
Quan
,
H.
,
Srinivasan
,
D.
, and
Khosravi
,
A.
,
2014
, “
Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
25
(
2
), pp.
303
315
. 10.1109/TNNLS.2013.2276053
21.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
A Convolutional Neural Network Model for Predicting a Product's Function, Given Its Form
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111408
. 10.1115/1.4037309
22.
Das
,
M.
, and
Ghosh
,
S. K.
,
2019
, “
FB-STEP: a Fuzzy Bayesian Network Based Data-Driven Framework for Spatio-Temporal Prediction of Climatological Time Series Data
,”
Expert Syst. Appl.
,
117
(
1
), pp.
211
227
. 10.1016/j.eswa.2018.08.057
23.
Evensen
,
G.
,
1994
, “
Sequential Data Assimilation With a Nonlinear Quasigeostrophic Model Using Monte Carlo Methods to Forecast Error Statistics
,”
J. Geophys. Res.
,
99
(
10
), pp.
143
10,162
. 10.1029/94jc00572
24.
Moradkhani
,
H.
,
Hsu
,
K. L.
,
Gupta
,
H.
, and
Sorooshian
,
S.
,
2005
, “
Uncertainty Assessment of Hydrologic Model States and Parameters: Sequential Data Assimilation Using the Particle Filter
,”
Water Resour. Res.
,
41
(
5
). 10.1029/2004WR003604
25.
Sabbioni
,
E.
,
Bao
,
R.
,
Cheli
,
F.
, and
Tarsitano
,
D.
,
2017
, “
A Particle Filter Approach for Identifying Tire Model Parameters From Full-Scale Experimental Tests
,”
ASME J. Mech. Des.
,
139
(
2
), p.
021403
. 10.1115/1.4035186
26.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Process for Machine Learning
, Vol.
2
,
MIT Press
,
Cambridge, MA
, p.
4
.
27.
Bernardo
,
J. M.
,
Berger
,
J. O.
,
Dawid
,
A. P.
, and
Smith
,
A. F. M.
,
1992
,
Bayesian Statistics 4
,
Oxford University Press
,
Valencia
, pp.
345
363
.
28.
Williams
,
C. K. I.
,
1998
, “Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond.”
Learning in Graphical Models
,
Springer
,
Dordrecht
, pp.
599
621
.
29.
Li
,
M.
, and
Wang
,
Z.
,
2018
, “
Confidence-driven Design Optimization Using Gaussian Process Metamodeling With Insufficient Data
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121405
. 10.1115/1.4040985
30.
Bracewell
R. N.
,
1986
,
The Fourier Transform and Its Applications
,
McGraw-Hill
,
New York
, Vol.
31999
.
31.
Daubechies
,
I.
,
1990
, “
The Wavelet Transform, Time-Frequency Localization and Signal Analysis
,”
IEEE Trans. Inform. Theory
,
36
(
5
), pp.
961
1005
. 10.1109/18.57199
32.
Amabili
,
M.
,
Sarkar
,
A.
, and
Paidoussis
,
M. P.
,
2003
, “
Reduced-Order Models for Nonlinear Vibrations of Cylindrical Shells via the Proper Orthogonal Decomposition Method
,”
J. Fluids Struct.
,
18
(
2
), pp.
227
250
. 10.1016/j.jfluidstructs.2003.06.002
33.
Graham
,
M.
, and
Kevrekidis
,
I.
,
1996
, “
Alternative Approaches to the Karhunen-Loève Decomposition for Model Reduction and Data Analysis
,”
Comput. Chem. Eng.
,
20
(
5
), pp.
495
506
. 10.1016/0098-1354(95)00040-2
34.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
,
2008
, “
Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Probability Analysis
,”
Struct. Multidiscipl. Optim.
,
37
(
1
), pp.
13
28
. 10.1007/s00158-007-0210-7
35.
Cheng
,
C.
,
A.
Sa-Ngasoongsong
,
O.
Beyca
,
T.
Le
,
H.
Yang
,
Z.
Kong
, and
S. T.
Bukkapatnam
(
2015
). “
Time Series Forecasting for Nonlinear and non-Stationary Processes: A Review and Comparative Study
.”
IIE Trans.
,
47
(
10
),
1053
1071
. 10.1080/0740817X.2014.999180
36.
Zhao
,
X.
,
Kebbie-Anthony
,
A. B.
,
Azarm
,
S.
, and
Balachandran
,
B.
,
2019
, “
Dynamic Data-Driven Multi-Step-Ahead Prediction With Simulation Data and Sensor Measurement Data
,”
AIAA J.
,
57
(
6
), pp.
2270
2279
. 10.2514/1.j057913
37.
Lathauwer
,
L. D.
,
Moor
,
B. D.
, and
Vandewalle
,
J.
,
2000
, “
A Multilinear Singular Value Decomposition
,”
SIAM J. Matrix Anal. Appl.
,
21
(
4
), pp.
1253
1278
. 10.1137/S0895479896305696
38.
Vasilescu
,
M. A. O.
, and
Terzopoulos
,
D.
,
2007
, “
Multilinear Projection for Appearance-Based Recognition in the Tensor Framework.
Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference
,
Rio de Janeiro, Brazil
,
Oct. 14–21
,
IEEE
, pp.
1
8
.
39.
Fanaee-T
,
H.
, and
Gama
,
J.
,
2015
, “
Eigenevent: An Algorithm for Event Detection From Complex Data Streams in Syndromic Surveillance
,”
Intell. Data Anal.
,
19
(
3
), pp.
597
616
. 10.3233/IDA-150734
40.
Kitagawa
,
G.
,
1996
, “
Monte Carlo Filter and Smoother for Non-Gaussian Non-Linear State Space Models
,”
J. Comput. Graph. Statist.
,
5
(
1
), pp.
1
25
. 10.1080/10618600.1996.10474692
41.
Douc
,
R.
,
Cappe
,
O.
, and
Moulines
,
E.
,
2005
, “
Comparison of Resampling Schemes for Particle Filtering
,”
4th International Symposium on Image and Signal Processing and Analysis
,
Zagreb, Croatia, Croatia
,
Sept. 15–17
, pp.
64
69
.
42.
Moradkhani
,
H.
,
Sorooshian
,
S.
,
Gupta
,
H. V.
, and
Houser
,
P. R.
,
2005a
, “
Dual State-Parameter Estimation of Hydrological Models Using Ensemble Kalman Filter
,”
Adv. Water Resour.
,
28
(
2
), pp.
135
147
. 10.1016/j.advwatres.2004.09.002
43.
Stewart
,
G. W.
,
1993
, “
On the Early History of the Singular Value Decomposition
,”
SIAM Rev.
,
35
(
4
), pp.
551
566
. 10.1137/1035134
44.
Nangia
,
R. K.
,
Palmer
,
M. E.
, and
Tilmann
,
C. P.
,
2003
, “
Unconventional High Aspect Ratio Joined-Wing Aircraft with aft and Forward Swept Wing Tips
,”
Proceedings of the 41st Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 6–9
, p.
605
.
45.
Tilmann
,
C. P.
,
2002
,
Emerging Aerodynamic Technologies for High-Altitude Long-Endurance Sensorcraft UAVs, Air Force Research Lab Wright-Patterson AFB OH Air Vehicles Directorate
.
46.
Zhao
,
X.
,
Kania
,
R.
,
Kebbie-Anthony
,
A. B.
,
Azarm
,
S.
, and
Balachandran
,
B.
,
2018
, “
Dynamic Data-Driven Aeroelastic Response Prediction with Discrete Sensor Observations
,”
2018 AIAA Non-Deterministic Approaches Conference
,
Kissimmee, FL
,
Jan. 8–12
, p.
2173
.
47.
Zhao
,
X.
,
Azarm
,
S.
, and
Balachrandran
,
B.
,
2018
, “
Dynamic Data-Driven Spatiotemporal System Behavior Prediction with Simulations and Sensor Measurement Data
,”
ASME 2018 International Design Engineering Technical Conferences and Computer and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, p.
V02BT03A060
.
48.
Kania
,
R.
,
Kebbie-Anthony
,
A. B.
,
Zhao
,
X.
,
Azarm
,
S.
, and
Balachandran
,
B.
,
2018
,
Dynamic Data-Driven Approach for Unmanned Aircraft Systems and Aeroelastic Response Analysis
,
Handbook of Dynamic Data Driven Applications Systems
,
Springer, Cham
, pp.
193
211
.
49.
Kebbie-Anthony
,
A. B.
,
Gumerov
,
N. A.
,
Preidikman
,
S.
,
Balachandran
,
B.
, and
Azarm
,
S.
,
2019
, “
Fast Multipole Accelerated Unsteady Vortex Lattice Method Based Computations
,”
J. Aeros. Inform. Syst.
,
11
(
6
), pp.
237
248
. 10.2514/1.I010690
50.
Roccia
,
B.
,
Preidikman
,
S.
, and
Balachandran
,
B.
,
2017
, “
Computational Dynamics of Flapping Wings in Hover Flight: A Co-simulation Strategy
,”
AIAA J.
,
55
(
6
), pp.
1806
1822
. 10.2514/1.J055137
You do not currently have access to this content.