This paper presents two techniques for modeling the folding patterns of deployable nonaxisymmetric tubes using regular arrangement of the fold lines and three different fundamental folding designs, namely, Miura folding, bellows folding, and torsional buckling-based folding. The first modeling technique involves the cutting and removal of unnecessary parts from the original folding pattern of the corresponding straight cylinder, and the second technique involves the design of additional fold lines for folding the unnecessary parts into the tube without being cut. The applicability and constraints of each folding design and modeling technique are discussed and summarized.

References

1.
Freeland
,
R. E.
,
Bilyeu
,
G. D.
,
Veal
,
G. R.
, and
Mikulas
,
M. M.
,
1998
, “
Inflatable Deployable Space Structures Technology Summary
,”
49th International Astronautical Congress
, Melbourne, Australia, Sept. 28–Oct. 2, Paper No. IAF-98-I.5.01.
2.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
A New Concept for Solid Surface Deployable Antennas
,”
Acta Astronaut.
,
38
(
2
), pp.
103
113
.
3.
Johnson
,
L.
,
Young
,
R. M.
, and
Montgomery
,
E. E.
, IV
,
2007
, “
Recent Advances in Solar Sail Propulsion Systems at NASA
,”
Acta Astronaut.
,
61
(
1–6
), pp.
376
382
.
4.
Tsuda
,
Y.
,
Mori
,
O.
,
Funase
,
R.
,
Sawada
,
H.
,
Yamamoto
,
T.
,
Saiki
,
T.
,
Endo
,
T.
, and
Kawaguchi
,
J.
,
2011
, “
Flight Status of IKAROS Deep Space Solar Demonstration
,”
Acta Astronaut.
,
69
(
9
), pp.
833
840
.
5.
Zhao
,
X.
,
Hu
,
Y.
, and
Hagiwara
,
I.
,
2011
, “
Shape Optimization to Improve Energy Absorption Ability of Cylindrical Thin-Walled Origami Structure
,”
J. Comput. Sci. Technol.
,
5
(
3
), pp.
148
162
.
6.
Ma
,
J.
, and
You
,
Z.
,
2013
, “
A Novel Origami Crash Box With Varying Profiles
,”
ASME
Paper No. DETC2013-13495.
7.
Miura
,
K.
,
2013
, “
Foldable Plate Structures and Applications
,”
Bull. Soc. Automot. Technol. Jpn.
,
67
(
5
), pp.
52
58
(in Japanese).
8.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng., A
,
419
(
1–2
), pp.
131
137
.
9.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I—Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
10.
Nojima
,
T.
,
2001
, “
Structure With Folding Lines, Folding Line Forming Mold, and Folding Line Forming Method
,” Patent No. WO 2001081821 A9.
11.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
Int. J. Jpn. Soc. Mech. Eng.
,
45
(
1
), pp.
364
370
.
12.
Hunt
,
G. W.
, and
Ario
,
I.
,
2005
, “
Twist Bucking and the Foldable Cylinder: An Exercise in Origami
,”
Int. J. Non-Linear Mech.
,
40
(
6
), pp.
833
843
.
13.
Fujimoto
,
S.
, and
Nishiwaki
,
M.
,
1982
,
Souzousuru Origami Asobi Heno Shoutai
,
Asahi Culture Center
,
Osaka, Japan
(in Japanese).
14.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
Performance of Self-Expanding Nitinol Stent in a Curved Artery: Impact of Stent Length and Deployment Orientation
,”
ASME J. Biomech. Eng.
,
134
(
7
), p.
071007
.
15.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,” The Institute of Space and Astronautical Science, Sagamihara, Japan, Report No. 618.
You do not currently have access to this content.