Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form of the structure and show potential for many engineering applications. However, the enormity of the design space and the complex relationship between origami-based geometries and engineering metrics place a severe limitation on design strategies based on intuition. The presented work proposes a systematic design method using topology optimization to distribute foldline properties within a reference crease pattern, adding or removing folds through optimization, for a mechanism design. Optimization techniques and mechanical analysis are co-utilized to identify an action origami building block and determine the optimal network connectivity between multiple actuators. Foldable structures are modeled as pin-joint truss structures with additional constraints on fold, or dihedral, angles. A continuous tuning of foldline stiffness leads to a rigid-to-compliant transformation of the local foldline property, the combination of which results in origami crease design optimization. The performance of a designed origami mechanism is evaluated in 3D by applying prescribed forces and finding displacements at set locations. A constraint on the number of foldlines is used to tune design complexity, highlighting the value-add of an optimization approach. Together, these results underscore that the optimization of function, in addition to shape, is a promising approach to origami design and motivates the further development of function-based origami design tools.

References

1.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (5OSME)
,
Singapore Management University
,
Singapore
, pp.
291
303
.
2.
Ryu
,
J.
,
D'Amato
,
M.
,
Cui
,
X.
,
Long
,
K. N.
,
Qi
,
J. H.
, and
Dunn
,
M. L.
,
2012
, “
Photo-Origami—Bending and Folding Polymers With Light
,”
Appl. Phys. Lett.
,
100
(16), p.
161908
.
3.
Kuribayashi-Shigetomi
,
K.
,
Onoe
,
H.
, and
Takeuchi
,
S.
,
2012
, “
Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force
,”
PloS One
,
7
(
12
), p.
e51085
.
4.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.
5.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
, and
Malak
,
R.
,
2013
, “
Simulation-Based Design of a Self-Folding Smart Material System
,”
ASME
Paper No. DETC2013-13439.
6.
Gattas
,
J. M.
, and
You
,
Z.
,
2013
, “
Quasi-Static Impact Response of Alternative Origami-Core Sandwich Panels
,”
ASME
Paper No. DETC2013-12681.
7.
Ma
,
J.
, and
You
,
Z.
,
2013
, “
A Novel Origami Crash Box With Varying Profiles
,”
ASME
Paper No. DETC2013-13495.
8.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Ware
,
T.
,
Vaia
,
R. A.
,
White
,
T. J.
,
Reich
,
G. W
, and
Joo
,
J. J.
,
2014
, “
Inverse Design of LCN Films for Origami Applications Using Topology Optimization
,”
ASME
Paper No. SMASIS2014-7497.
9.
Belcastro
,
S. M.
, and
Hull
,
T. C.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(
1–3
), pp.
273
282
.
10.
Lang
,
R. J.
,
1998
, “
Treemaker 4.0: A Program for Origami Design
,”
http://
www.langorigami.com/science/computational/treemaker/TreeMkr40.pdf
11.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University
,
New York
.
12.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Origami 4: Fourth International Meeting of Origami Science
,
Mathematics, and Education
,
Pasadena, CA
, pp.
175
187
.
13.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
25
(
10
), pp.
1010
1019
.
14.
Shafer
,
J.
,
2010
,
Origami Ooh La La! Action Origami for Performance and Play
, Self-published, Printed by
CreateSpace
,
Charleston, SC
.
15.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
16.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
, Berlin, NY.
17.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
N.
,
1994
, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
1994 ASME Winter Annual Meeting
, Chicago, IL, DSC-Vol. 55-2, pp.
677
686
.
18.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
19.
Pedersen
,
C. B.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.
20.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26
), pp.
3443
3459
.
21.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integr. Circuits Signal Process.
,
29
(
1–2
), pp.
7
15
.
22.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
,
1998
, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
(
3
), pp.
535
559
.
23.
Ramrakhyani
,
D. S.
,
Frecker
,
M. I.
, and
Lesieutre
,
G. A.
,
2009
, “
Hinged Beam Elements for the Topology Design of Compliant Mechanisms Using the Ground Structure Approach
,”
Struct. Multidiscip. Optim.
,
37
(
6
), pp.
557
567
.
24.
Buhl
,
T.
,
Pedersen
,
C. B.
, and
Sigmund
,
O.
,
2000
, “
Stiffness Design of Geometrically Nonlinear Structures Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
19
(
2
), pp.
93
104
.
25.
Huang
,
X.
,
Li
,
Y.
,
Zhou
,
S.
, and
Xie
,
Y.
,
2014
, “
Topology Optimization of Compliant Mechanisms With Desired Structural Stiffness
,”
Eng. Struct.
,
79
, pp.
13
21
.
26.
Luo
,
Z.
,
Tong
,
L.
,
Wang
,
M. Y.
, and
Wang
,
S.
,
2007
, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
680
705
.
27.
Kang
,
Z.
, and
Tong
,
L.
,
2008
, “
Topology Optimization-Based Distribution Design of Actuation Voltage in Static Shape Control of Plates
,”
Comput. Struct.
,
86
(
19
), pp.
1885
1893
.
28.
Frecker
,
M. I.
,
2003
, “
Recent Advances in Optimization of Smart Structures and Actuators
,”
J. Intell. Mater. Syst. Struct.
,
14
(
4–5
), pp.
207
216
.
29.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak
,
R. J.
, Jr.
, and
Lagoudas
,
D. C.
,
2014
, “
Origami-Inspired Active Structures: A Synthesis and Review
,”
Smart Mater. Struct.
,
23
(
9
), p.
094001
.
30.
Abbott
,
A. C.
,
Buskohl
,
P. R.
,
Joo
,
J. J.
,
Reich
,
G. W.
, and
Vaia
,
R. A.
,
2014
, “
Characterization of Creases in Polymers for Adaptive Origami Structures
,”
ASME
Paper No. SMASIS2014-7480.
31.
Burgoon
,
R.
,
Wood
,
Z. J.
, and
Grinspun
,
E.
,
2006
, “
Discrete Shells Origami
,”
21st International Conference on Computers and their Applications
,
Seattle, WA
, pp.
180
186
.
32.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes-A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
33.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Joo
,
J. J.
,
Reich
,
G. W.
, and
Vaia
,
R. A.
,
2014
, “
Topology Optimization for Design of Origami-Based Active Mechanisms
,”
ASME
Paper No. DETC2014-35153.
34.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
35.
RoboFold
,” http://www.robofold.com
36.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Design Optimization & Challenges of Large Folding Origami Structures
,”
ASME
Paper No. DETC2015_47420.
This content is only available via PDF.
You do not currently have access to this content.