Abstract

Analytical load–displacement relations for flexure mechanisms, formulated by integrating the individual analytical models of their building-blocks (i.e., flexure elements), help in understanding the constraint characteristics of the whole mechanism. In deriving such analytical relations for flexure mechanisms, energy based approaches generally offer lower mathematical complexity, compared to Newtonian methods, by reducing the number of unknowns—specifically, the internal loads. To facilitate such energy based approaches, a closed-form nonlinear strain energy expression for a generalized bisymmetric spatial beam flexure is presented in this paper. The strain energy, expressed in terms of the end-displacement of the beam, considers geometric nonlinearities for intermediate deformations, enabling the analysis of flexure mechanisms over a finite range of motion. The generalizations include changes in the initial orientation and shape of the beam flexure due to potential misalignment or manufacturing. The effectiveness of this approach is illustrated via the analysis of a multilegged table flexure mechanism. The resulting analytical model is shown to be accurate using nonlinear finite elements analysis, within a load and displacement range of interest.

References

1.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science Publishers
,
New York, NY
.
2.
Jones
,
R. V.
,
1988
,
Instruments and Experiences: Papers on Measurement and Instrument Design
,
John Wiley & Sons
,
New York, NY
.
3.
Sen
,
S.
, and
Awtar
,
S.
,
2013
, “
A Closed-Form Non-Linear Model for the Constraint Characteristics of Symmetric Spatial Beams
,”
ASME J. Mech. Des.
,
135
(3), p.
031003
.10.1115/1.4023157
4.
Rasmussen
,
N. O.
,
Wittwer
,
J. W.
,
Todd
,
R. H.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2006
, “
A 3D Pseudo-Rigid-Body Model for Large Spatial Deflections of Rectangular Cantilever Beams
,”
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Philadelphia, PA
.
5.
Ramirez
,
I. A.
, and
Lusk
,
C.
,
2011
, “
Spatial-Beam Large-Deflection Equations and Pseudo-Rigid Body Model for Axisymmetric Cantilever Beams
,”
Proceedings IDETC/CIE 2011
,
Washington D. C.
, Paper # 47389.
6.
Tauchert
,
T. R.
,
1974
,
Energy Principles in Structural Mechanics
,
McGraw-Hill
,
New York, NY
.
7.
Chen
,
K. S.
,
Trumper
,
D. L.
, and
Smith
,
S. T.
,
2002
, “
Design and Control for an Electromagnetically Driven X–Y–θ Stage
,”
Precis. Eng.
,
26
, pp.
355
369
.10.1016/S0141-6359(02)00147-2
8.
Samuel
,
H. D.
, and
Sergio
,
N. S.
,
1979
, “
Compliant Assembly System
,” U.S. Patent No. 4155169 A.
9.
Ding
,
X. L.
, and
Dai
,
J. S.
,
2006
, “
Characteristic Equation-Based Dynamics Analysis of Vibratory Bowl Feeders With Three Spatial Compliant Legs
,”
IEEE Trans. Rob. Autom.
,
5
(1), pp.
164
175
10.1109/TASE.2007.910301.
10.
Awtar
,
S. T.
,
Trutna
,
T.
,
Nielsen
,
J. M.
,
Abani
,
R.
, and
Geiger
,
J. D.
,
2010
, “
FlexDex: A Minimally Invasive Surgical Tool With Enhanced Dexterity and Intuitive Actuation
,”
ASME J. Med. Devices
,
4
(3), p.
035003
.10.1115/1.4002234
11.
Hao
,
G.
, and
Kong
,
X.
,
2012
, “
A Novel Large-Range XY Compliant Parallel Manipulator With Enhanced Out-of-Plane Stiffness
,”
ASME J. Mech. Des.
134
(6), p.
061009
.10.1115/1.4006653
12.
Awtar
,
S.
, and
Alexander
H, S.
,
2007
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Med. Devices
,
129
(8), pp.
816
830
10.1115/1.2735342.
13.
Kim
,
C. J.
,
Moon
,
Y. M.
, and
Kota
,
S.
,
2008
, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
,
130
(2), p.
022308
10.1115/1.2821387.
14.
Hao
,
G.
,
Kong
,
X.
, and
Reuben
,
R. L.
,
2011
, “
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-Beam Modules
,”
Mech. Mach. Theory
,
46
, pp.
680
706
.10.1016/j.mechmachtheory.2010.12.007
15.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1969
,
Theory of Elastisity
,
McGraw-Hill
,
New York, NY
.
16.
DaSilva
,
M. R. M. C.
,
1988
, “
Non-Linear Flexural-Flexural-Torsional-Extensional Dynamics of Beams-I. Formulation
,”
Int. J. Solids Struct.
,
24
, pp.
1225
1234
.10.1016/0020-7683(88)90087-X
17.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2006
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(6), pp.
625
639
.10.1115/1.2717231
You do not currently have access to this content.