Driven by the moral sense of obligation, legislative and social pressures, manufacturers now consider effective part reuse and material recycling at the end of product life at the design stage. It is a key consideration to use joints that can disengage with minimum labor, part damage, and material contamination. This paper extends our previous work on the design of high-stiffness reversible locator-snap system that can disengage nondestructively with localized heat (Shalaby and Saitou, 2006, “Optimal Heat-Reversible Snap Joints for Frame-Panel Assembly in Aluminum Space Frame Automotive Bodies,” Proceedings of the LCE2006: The 13th CIRP International Conference on Life Cycle Engineering, Leuven, Belgium, May 31–Jun. 2, pp. 411–416; Shalaby and Saitou, 2008, “Design for Disassembly With High-Stiffness, Heat-Reversible Locator-Snap Systems,” ASME J. Mech. Des., 130(12), p. 121701) to include (1) modeling for tolerance stack-up and (2) lock-and-key concept to ensure that snaps only disengage when the right procedure is followed. The design problem is posed as an optimization problem to find the locations, numbers, and orientations of locators and snaps, and the locations and sizes of heating areas, to release the snaps with minimum heat, compliance, and tolerance stack-up. The motion and structural requirements are considered constraints. Screw theory is employed to precalculate the set of feasible types and orientations of locators and snaps that are examined during optimization. Multi-objective genetic algorithm coupled with structural and thermal finite element analysis is used to solve the optimization problem. The method is applied on two case studies. The Pareto-optimal solutions present alternative designs with different trade-offs between the design objectives.

1.
Babu
,
B.
,
Parande
,
A.
, and
Basha
,
C.
, 2007, “
Electrical and Electronic Waste: A Global Environmental Problem
,”
Waste Manage. Res.
,
25
(
4
), pp.
307
318
. 0734-242X
2.
Boothroyd
,
G.
, and
Alting
,
L.
, 1992, “
Design for Assembly and Disassembly
,”
CIRP Ann.
0007-8506,
41
, pp.
625
636
.
3.
Jovane
,
F.
,
Alting
,
L.
,
Armillotta
,
A.
,
Eversheim
,
W.
,
Feldmann
,
K.
, and
Seliger
,
G.
, 1993, “
A Key Issue in Product Life Cycle: Disassembly
,”
CIRP Ann.
0007-8506,
42
, pp.
651
658
.
4.
Keoleian
,
G.
, and
Menerey
,
D.
, 1994, “
Sustainable Development by Design: Review of Life Cycle Design and Other Approaches
,”
J. Air Waste Manage. Assoc.
,
44
(
5
), pp.
645
668
.
5.
Gungor
,
A.
, and
Gupta
,
S.
, 1999, “
Issues in Environmentally Conscious Manufacturing and Product Recovery: A Survey
,”
Comput. Ind. Eng.
0360-8352,
36
, pp.
811
853
.
6.
Shalaby
,
M.
, and
Saitou
,
K.
, 2006, “
Optimal Heat-Reversible Snap Joints for Frame-Panel Assembly in Aluminum Space Frame Automotive Bodies
,”
Proceedings of the LCE2006: The 13th CIRP International Conference on Life Cycle Engineering
, Leuven, Belgium, May 31–Jun. 2, pp.
411
416
.
7.
Shalaby
,
M.
, and
Saitou
,
K.
, 2008, “
Design for Disassembly With High-Stiffness, Heat-Reversible Locator-Snap Systems
,”
ASME J. Mech. Des.
0161-8458,
130
(
12
), p.
121701
.
8.
Bonenberger
,
P. R.
, 2000,
The First Snap-Fit Handbook: Creating Attachments for Plastic Parts
,
Hanser Gardner
,
Cincinnati, OH
.
9.
Turnbull
,
V.
, 1984, “
Design Considerations for Cantilever Snap-Fit Latches in Thermoplastics
,”
Proceedings of the Winter Annual Meeting of ASME
, New Orleans, LA, Paper No. 84-WA/Mats-28, pp.
1
8
.
10.
Wang
,
L.
,
Gabriele
,
G.
, and
Luscher
,
A.
, 1995, “
Failure Analysis of a Bayonet-Finger Snap-Fit
,”
Proceedings of the ANTEC ’95
, Boston, MA, May, pp.
3799
3803
.
11.
Larsen
,
G.
, and
Larson
,
R.
, 1994, “
Parametric Finite-Element Analysis of U-Shaped Snap-Fits
,”
Proceedings of the ANTEC ’94
, San Francisco, CA, pp.
3081
3084
.
12.
Genc
,
S.
,
Messler
,
R.
,
Bonenberger
,
P.
, and
Gabriele
,
G.
, 1997, “
Enumeration of Possible Design Options for Integral Attachment Using a Hierarchical Classification Scheme
,”
ASME J. Mech. Des.
0161-8458,
119
, pp.
178
184
.
13.
Genc
,
S.
,
Messler
,
R.
, Jr.
, and
Gabriele
,
G.
, 1998, “
A Systematic Approach to Integral Snap-Fit Attachment Design
,”
Res. Eng. Des.
0934-9839,
10
, pp.
84
93
.
14.
Genc
,
S.
,
Messler
,
R.
, Jr.
, and
Gabriele
,
G.
, 1998, “
A Hierarchical Classification Scheme to Define and Order the Design Space for Integral Snap-Fit Assembly
,”
Res. Eng. Des.
0934-9839,
10
, pp.
94
106
.
15.
Luscher
,
A.
,
Suri
,
G.
, and
Bodmann
,
D.
, 1998, “
Enumeration of Snap-Fit Assembly Motions
,”
Proceedings of the ANTEC
,
98
, pp.
2677
2681
.
16.
Shetty
,
D.
,
Rawolle
,
K.
, and
Campana
,
C.
, 2000, “
A New Methodology for Ease-of-Disassembly in Product Design
,”
Recent Advances in Design for Manufacture
, Vol.
109
,
ASME
,
New York
, pp.
39
50
.
17.
Suri
,
G.
, and
Luscher
,
A.
, 1999, “
Structural Abstraction in Snap-Fit Analysis
,”
Proceedings of the 1999 ASME Design Engineering Technical Conferences
, Las Vegas, NV, Sept. 12–15, Paper No. DETC1999/DAC-8567.
18.
Nichols
,
D.
, and
Luscher
,
A.
, 1999, “
Generation of Design Data Through Numerical Modeling of a Post and Dome Feature
,”
Proceedings of the 1999 ASME Design Engineering Technical Conferences
, Las Vegas, NV, Sept. 12–15, Paper No. DETC1999/DAC-8596.
19.
Chiodo
,
J.
,
Jones
,
N.
,
Billett
,
E.
, and
Harrison
,
D.
, 2002, “
Shape Memory Alloy Actuators for Active Disassembly Using ‘Smart’ Materials of Consumer Electronic Products
,”
Mater. Des.
,
23
, pp.
471
478
. 0264-1275
20.
Li
,
Y.
,
Saitou
,
K.
,
Kikuchi
,
N.
,
Skerlos
,
S.
, and
Papalambros
,
P.
, 2001, “
Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly
,”
Proceedings of the EcoDesign 2001: Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing
, Tokyo, Japan, Dec. 12–15, pp.
360
365
.
21.
Li
,
Y.
,
Saitou
,
K.
, and
Kikuchi
,
N.
, 2003, “
Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly
,”
International Journal of CAD/CAM
,
3
, pp.
26
40
.
22.
Li
,
Y.
,
Saitou
,
K.
, and
Kikuchi
,
N.
, 2003, “
Design of Heat-Activated Compliant Mechanisms for Product-Embedded Disassembly
,”
Proceedings of the Fifth World Congress on Computational Mechanics
, Vienna, Austria, Jul. 7–12.
23.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
24.
Waldron
,
K. J.
, 1966, “
The Constraint Analysis of Mechanisms
,”
J. Mech.
0022-2569,
1
, pp.
101
114
.
25.
Konkar
,
R.
, and
Cutkosky
,
M.
, 1995, “
Incremental Kinematic Analysis of Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
117
, pp.
589
596
.
26.
Adams
,
J. D.
, and
Whitney
,
D. E.
, 1999, “
Application of Screw Theory to Constraint Analysis of Assemblies of Rigid Parts
,”
Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning
, Porto, Portugal, Jul. 2–24, pp.
69
74
.
27.
Adams
,
J. D.
, and
Whitney
,
D. E.
, 1999, “
Application of Screw Theory to Motion Analysis of Assemblies of Rigid Parts
,”
Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning
, Porto, Portugal, Jul. 21–24, pp.
75
80
.
28.
Lee
,
B.
, and
Saitou
,
K.
, 2006, “
Three-Dimensional Assembly Synthesis for Robust Dimensional Integrity Based on Screw Theory
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
243
251
.
29.
Coello
,
C.
,
Veldhuizen
,
D.
, and
Lmont
,
G.
, 2002,
Evolutionary Algorithms for Solving Multi-Objective Problems
,
Kluwer Academic
,
Norwell, MA
.
30.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
, 2002, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
1089-778X,
6
(
2
), pp.
182
197
.
31.
Garner
,
D.
, 2006,
Recycling Technology: Unlocking the Riddle of LCD Re-Use
,
University of York Communications Office
,
Heslington, York
.
32.
Cui
,
J.
, and
Forssberg
,
E.
, 2003, “
Mechanical Recycling of Waste Electric and Electronic Equipment: A Review
,”
J. Hazard. Mater.
,
99
(
3
), pp.
243
263
. 0304-3894
You do not currently have access to this content.