This paper explores the ability of a virtual team of specialized strategic software agents to cooperate and evolve to adaptively search an optimization design space. Our goal is to demonstrate and understand how such dynamically evolving teams may search more effectively than any single agent or a priori set strategy. We present a core framework and methodology that has potential applications in layout, scheduling, manufacturing, and other engineering design areas. The communal agent team organizational structure employed allows cooperation of agents through the products of their work and creates an ever changing set of individual solutions for the agents to work on. In addition, the organizational structure allows the framework to be adaptive to changes in the design space that may occur during the optimization process. An evolutionary approach is used, but evolution occurs at the strategic rather than the solution level, where the strategies of agents in the team are the decisions for when and how to choose and alter a solution, and the agents evolve over time. As an application of this approach in a static domain, individual solutions are tours in the familiar combinatorial optimization problem of the traveling salesman. With a constantly changing set of these tours, the team, with each agent employing a different solution strategy, must evolve to apply the solution strategies, which are most useful given the solution set at any point in the process. We discuss the extensions to our preliminary work that will make our framework useful to the design and optimization community.

1.
Campbell
,
M. I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
, 1999, “
A-Design: An Agent-Based Approach to Conceptual Design in a Dynamic Environment
,”
Res. Eng. Des.
0934-9839,
11
(
3
), pp.
172
192
.
2.
Olson
,
J. T.
, and
Cagan
,
J.
, 2004, “
Inter-Agent Ties in Computational Configuration Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
18
(
2
), pp.
135
152
, special issue on agent-based design.
3.
Branke
,
J.
, 2002,
Evolutionary Optimization in Dynamic Environments
,
Kluwer Academic
,
Norwell, MA
.
4.
Franklin
,
S.
, and
Graesser
,
A.
, 1997, “
Is It an Agent, or Just a Program?: A Taxonomy for Autonomous Agents
,”
Lect. Notes Comput. Sci.
0302-9743,
1193
, pp.
21
35
.
5.
Russell
,
S. J.
, and
Norvig
,
P.
, 1995,
Artificial Intelligence: A Modern Approach
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
6.
De Souza
,
P. S.
, 1993, “
Asynchronous Organizations for Multi-Algorithm Problems
,” Ph.D. thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University.
7.
Sachdev
,
S.
, 1998, “
Explorations in Asynchronous Teams
,” Ph.D. thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University.
8.
Talukdar
,
S.
,
Baerentzen
,
L.
,
Gove
,
A.
, and
De Souza
,
P.
, 1998, “
Asynchronous Teams: Cooperation Schemes for Autonomous Agents
,”
J. Heuristics
1381-1231,
4
, pp.
295
321
.
9.
Rice
,
J. R.
, 1976, “
The Algorithm Selection Problem
,”
Advances in Computers
,
M.
Rubinoff
and
M. C.
Yovitz
, eds., Vol.
15
, pp.
65
118
.
10.
Gomes
,
C. P.
, and
Selman
,
B.
, 2001, “
Algorithm Portfolios
,”
Artif. Intell.
0004-3702,
126
, pp.
43
62
.
11.
Nudelman
,
E.
,
Andrew
,
G.
,
Mcfadden
,
J.
,
Leyton-Brown
,
K.
, and
Shoham
,
Y.
, 2003, “
A Portfolio Approach to Algorithm Selection
,”
Proceedings of IJCAI-03, 18th International Joint Conference on Artificial Intelligence
.
12.
Giraud-Carrier
,
C.
,
Vilalta
,
R.
, and
Brazdil
,
P.
, 2004, “
Introduction to the Special Issue on Meta-Learning
,”
Mach. Learn.
0885-6125,
54
(
3
), pp.
187
193
.
13.
Schmidhuber
,
J.
, 2004, “
Optimal Ordered Problem Solving
,”
Mach. Learn.
0885-6125,
54
(
3
), pp.
211
254
.
14.
Moral
,
R. J.
,
Sahoo
,
D.
, and
Dulikravich
,
G. S.
, 2006, “
Multi-Objective Hybrid Evolutionary Optimization With Automatic Switching
,”
11th AIAA∕ISSMO Multidisciplinary Analysis and Optimization Conference
.
15.
Gagliolo
,
M.
, and
Schmidhuber
,
J.
, 2007, “
Learning Dynamic Algorithm Portfolios
,” Technical Report No. IDSIA-02-07.
16.
2000,
Evolutionary Computation 1
,
T.
Back
,
D. B.
Fogel
, and
Z.
Michalewicz
, eds.,
Institute of Physics, University of Reading
,
Berkshire
.
17.
2000,
Evolutionary Computation 2
,
T.
Back
,
D. B.
Fogel
, and
Z.
Michalewicz
, eds.,
Institute of Physics, University of Reading
,
Berkshire
.
18.
Fogel
,
D. B.
, 2000, “
What is Evolutionary Computation?
IEEE Spectrum
0018-9235,
37
(
2
), pp.
26
32
.
19.
Koza
,
J. R.
, 1992,
Genetic Programming: On the Programming of Computers by Means of Natural Selection
,
MIT
,
Cambridge, MA
.
20.
Potter
,
M. A.
, and
De Jong
,
K. A.
, 2000, “
Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents
,”
Evol. Comput.
1063-6560,
8
(
1
), pp.
1
29
.
21.
Cristea
,
P.
,
Arsene
,
A.
, and
Nitulescu
,
B.
, 2000, “
Evolutionary Intelligent Agents
,”
Proceedings of the 2000 Congress on Evolutionary Computation
, Vol.
2
, pp.
1320
1328
.
22.
Padberg
,
M.
, and
Rinaldi
,
G.
, 1987, “
Optimization of a 532-City Symmetric Traveling Salesman Problem by Branch and Cut
,”
Oper. Res. Lett.
0167-6377,
6
, pp.
1
7
.
23.
Applegate
,
D. L.
,
Bixby
,
R. E.
,
Chvatal
,
V.
, and
Cook
,
W. J.
, 2006,
The Traveling Salesman Problem
,
Princeton University Press
,
NJ
.
25.
Golden
,
B. L.
, and
Stewart
,
W. R.
, 1985, “
Empirical Analysis of Heuristics
,”
The Traveling Salemsan Problem
,
E. L.
Lawler
,
J. K.
Lenstra
,
A. H. G.
Rinooy Kan
, and
D. B.
Shmoys
, eds.,
Wiley
,
New York
.
26.
Bentley
,
J. L.
, 1990, “
Experiments on Traveling Salesman Heuristics
,”
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms
,
SIAM
,
Philadelphia, PA
, pp.
91
99
.
27.
Syslo
,
M. M.
,
Deo
,
N.
, and
Kowalik
,
J. S.
, 1983,
Discrete Optimization Algorithms With Pascal Programs
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
Rothlauf
,
F.
, 2002,
Representations for Genetic and Evolutionary Algorithms
,
Physica-Verlag
,
New York
.
29.
Deb
,
K.
, 2000, “
Encoding and Decoding Functions
,”
Evolutionary Computation 1
,
Institute of Physics, University of Reading
,
Berkshire
.
30.
Wooldridge
,
M.
, and
Jennings
,
N. R.
, 1995, “
Intelligent Agents: Theory and Practice
,”
Knowl. Eng. Rev.
0269-8889,
10
(
2
), pp.
115
152
.
31.
Grefenstette
,
J. J.
,
Gopal
,
R.
,
Rosmaita
,
B. J.
, and
Van Gucht
,
D.
, 1985, “
Genetic Algorithms for the Traveling Salesman Problem
,”
Proceedings of the First International Conference on Genetic Algorithms
, pp.
160
168
.
32.
Potvin
,
J.
, 1996, “
Genetic Algorithms for the Traveling Salesman Problem
,”
Ann. Operat. Res.
0254-5330,
63
(
3
), pp.
337
370
.
33.
Eiben
,
A. E.
, and
Smith
,
J. E.
, 2003,
Introduction to Evolutionary Computing
,
Springer-Verlag
,
New York
.
34.
Wolpert
,
D. H.
, and
Macready
,
W. G.
, 1997, “
No Free Lunch Theorems for Search
,” Technical Report No. SFI-TR-95-02-010.
35.
Swartz
,
W.
, and
Sechen
,
C.
, 1990, “
New Algorithms for the Placement and Routing of Macro Cells
,”
Proceedings of the IEEE Conference on Computer-Aided Design
,
Santa Clara
,
CA
, Nov. 11–15, IEEE Proceedings Catalog No. 90CH2924-9, pp.
336
339
.
36.
Cagan
,
J.
,
Shimada
,
K.
, and
Yin
,
S.
, 2002, “
A Survey of Computational Approaches to Three-Dimensional Layout Problems
,”
Comput.-Aided Des.
0010-4485,
34
(
8
), pp.
597
611
.
37.
Tiwari
,
S.
,
Fadel
,
G.
, and
Fenyes
,
P.
, 2008, “
A Fast and Efficient Compact Packing Algorithm for Free-Form Objects
,”
Proceedings of ASME IDETC∕CIE 2008
.
You do not currently have access to this content.