This paper presents methodologies for the analysis and design of redundant manipulators, especially macro-/ministructures, for improved dynamic performance. Herein, the dynamic performance of a redundant manipulator is characterized by the end-effector inertial and acceleration properties. The belted inertia ellipsoid is used to characterize inertial properties, and the recently developed dynamic capability equations are used to analyze acceleration capability. The approach followed here is to design the ministructure to achieve the task performance and then to design the macrostructure to support and complement the ministructure, referred to here as modular design. The methodology is illustrated in the design of a six-degree-of-freedom planar manipulator.

1.
Bowling
,
A.
, and
Khatib
,
O.
, 2005, “
The Dynamic Capability Equations: A New Tool for Analyzing Manipulator Dynamic Performance
,”
IEEE Trans. Rob.
,
21
(
1
), pp.
115
123
.
2.
Khatib
,
O.
, 1995, “
Inertial Properties in Robotic Manipulation: An Object-Level Framework
,”
Int. J. Robot. Res.
0278-3649,
13
(
1
), pp.
19
36
.
3.
Baruh
,
H.
, 1999,
Analytical Dynamics
, 1st ed.,
McGraw-Hill
,
New York
.
4.
Nakamura
,
Y.
, 1991,
Advanced Robotics: Redundancy and Optimization
,
Addison-Wesley
,
Reding, MA
.
5.
Khatib
,
O.
, 1983, “
Dynamic Control of Manipulators in Operational Space
,”
Proceedings of the Sixth CISM-IFToMM World Congress on the Theory of Machines and Mechanisms
,
New Delhi, India
, Vol.
2
, pp.
1128
1131
.
6.
Li
,
C.
, and
Rahn
,
C. D.
, 2003, “
Design of Continuous Backbone, Cable-Driven Robots
,”
ASME J. Mech. Des.
1050-0472,
124
(
2
), pp.
265
271
.
7.
Sujan
,
V. A.
, and
Dubowsky
,
S.
, 2004, “
Design of a Lightweight Hyper-Redundant Deployable Binary Manipulator
,”
ASME J. Mech. Des.
1050-0472,
126
(
1
), pp.
29
39
.
8.
Oh
,
S.-R.
,
Mankala
,
K.
,
Agrawal
,
S. K.
, and
Albus
,
J. S.
, 2005, “
A Dual-Stage Planar Cable Robot: Dynamic Modeling and Design of a Robust Controller With Positive Inputs
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
612
620
.
9.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
220
229
.
10.
Hess-Coelho
,
T. A.
, 2007, “
A Redundant Parallel Spherical Mechanism for Robotic Wrist Applications
,”
ASME J. Mech. Des.
1050-0472,
129
(
8
), pp.
891
895
.
11.
Chiacchio
,
P.
, and
Bouffard-Vercelli
,
Y.
, 1997, “
Force Polytope and Force Ellipsoid for Redundant Manipulators
,”
J. Rob. Syst.
0741-2223,
14
(
8
), pp.
613
620
.
12.
Lee
,
J.
, 2001, “
A Structured Algorithm for Minimum l∞-Norm Solutions and Its Application to a Robot Velocity Workspace Analysis
,”
Robotica
0263-5747,
19
, pp.
343
352
.
13.
Khatib
,
O.
, and
Burdick
,
J.
, 1987, “
Optimization of Dynamics in Manipulator Design: The Operational Space Formulation
,”
Int. J. Rob. Autom.
0826-8185,
2
(
2
), pp.
90
98
.
14.
Yoshikawa
,
T.
, 1985, “
Dynamic Manipulability of Robot Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
,
St. Louis, MO
, pp.
1033
1038
.
15.
Chiacchio
,
P.
, 2000, “
A New Dynamic Manipulability Ellipsoid for Redundant Manipulators
,”
Robotica
0263-5747,
18
, pp.
381
387
.
16.
Lipkin
,
H.
, and
Duffy
,
J.
, 1988, “
Hybrid Twist and Wrench Control for a Robotic Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
138
144
.
17.
Duffy
,
J.
, 1990, “
Editorial: The Fallacy of Modern Hybrid Control Theory That is Based on ‘Orthogonal Complements’ of Twist and Wrench Spaces
,”
J. Rob. Syst.
0741-2223,
7
(
2
), pp.
139
144
.
18.
Kazerounian
,
K.
, and
Rastegar
,
J.
, 1992, “
Object Norms: A Class of Coordinate and Metric Independent Norms for Displacements
,”
Proceedings of the ASME 22nd Biennial Mechanisms Conference: Flexible Mechanisms, Dynamics, and Analysis
, Scottsdale, AZ, Sept. 13–16, Vol.
47
, pp.
271
275
.
19.
Doty
,
K. L.
,
Melchiorri
,
C.
,
Schwartz
,
E. M.
, and
Bonivento
,
C.
, 1995, “
Robot Manipulability
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
3
), pp.
462
468
.
20.
Bowling
,
A.
, and
Khatib
,
O.
, 2003, “
The Dynamic Loading Criteria in Actuator Selection for Desired Dynamic Performance
,”
Adv. Rob.
0169-1864,
17
(
7
), pp.
641
656
.
21.
Graettinger
,
T. J.
, and
Krogh
,
B. H.
, 1988, “
The Acceleration Radius: A Global Performance Measure for Robotic Manipulators
,”
IEEE J. Rob. Autom.
0882-4967,
4
(
1
), pp.
60
69
.
22.
Bowling
,
A.
, and
Kim
,
C.
, 2006, “
Velocity Effects on Robotic Manipulator Dynamic Performance
,”
J. Mech. Des.
1050-0472,
128
(
6
), pp.
1236
1245
.
23.
Vertut
,
J.
, and
Liegeois
,
A.
, 1981, “
General Design Criteria for Manipulators
,”
Mech. Mach. Theory
0094-114X,
16
(
1
), pp.
65
70
.
24.
Asada
,
H.
, 1983, “
A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
105
(
3
), pp.
131
135
.
25.
Ma
,
O.
, and
Angeles
,
J.
, 1990, “
The Concept of Dynamic Isotropy and Its Applications to Inverse Kinematics and Trajectory Planning
,”
Proceedings IEEE International Conference on Robotics and Automation
, Vol.,
1
, pp.
481
486
.
26.
Singh
,
J. R.
, and
Rastegar
,
J.
, 1992, “
Optimal Synthesis of Robot Manipulators Based on Global Dynamic Parameters
,”
Int. J. Robot. Res.
0278-3649,
11
(
6
), pp.
538
548
.
27.
Bowling
,
A.
, and
Khatib
,
O.
, 2002, “
Actuator Selection for Desired Dynamic Performance
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
, vol.,
2
, pp.
1966
1973
.
28.
Ma
,
S.
, and
Nenchev
,
D. N.
, 1996, “
Local Torque Minimization for Redundant Manipulators: A Correct Formulation
,”
Robotica
0263-5747,
14
(
2
), pp.
235
239
.
You do not currently have access to this content.