This work presents design concepts to synthesize composite materials with special dynamic properties, namely, materials that soften at high frequencies. Such dynamic properties are achieved through the use of a two-phase material that has inclusions of a viscoelastic material of negative elastic modulus in a typical matrix phase that has a positive elastic modulus. A possible realization of the negative-stiffness inclusion phase is presented. A numerical homogenization technique is used to compute the average viscoelastic properties of the composite. The method and the properties of a composite material designed with it are demonstrated through an example.

1.
Pritz
,
T.
, 1998, “
Frequency Dependencies of Complex Moduli and Complex Poisson’s Ratio of Real Solid Materials
,”
J. Sound Vib.
0022-460X,
214
(
1
), pp.
83
104
.
2.
Cioranescu
,
D.
, and
Donato
,
P.
, 2000,
An Introduction to Homogenization
(
Oxford Lecture Series in Mathematics and Its Applications
Vol.
17
),
Oxford University Press
,
Oxford
.
3.
Diaz
,
A. R.
, and
Benard
,
A.
, 2003, “
Designing Materials With Prescribed Elastic Properties Using Polygonal Cells
,”
Int. J. Numer. Methods Eng.
0029-5981,
3
, pp.
301
314
.
4.
Lakes
,
R. S.
, and
Drugan
,
W. J.
, 2002, “
Dramatically Stiffer Elastic Composite Materials Due to a Negative Stiffness Phase
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
979
1009
.
5.
Prasad
,
J.
, and
Diaz
,
A. R.
, 2006, “
Synthesis of Bistable Periodic Structures Using Topology Optimization and a Genetic Algorithm
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
1298
1306
.
6.
Wang
,
Y. C.
, and
Lakes
,
R. S.
, 2004, “
Negative Stiffness Induced Extreme Viscoelastic Mechanical Properties: Stability and Dynamics
,”
Philos. Mag.
1478-6435,
84
(
35
), pp.
3785
3801
.
7.
Wang
,
Y. C.
, and
Lakes
,
R. S.
, 2005, “
Composites With Inclusions of Negative Bulk Modulus: Extreme Damping and Negative Poisson’s Ratio
,”
J. Compos. Mater.
0021-9983,
39
(
18
), pp.
1645
1657
.
8.
Hassani
,
B.
, and
Hinton
,
E.
, 1999,
Homogenization and Structural Topology Optimization
,
Springer-Verlag
,
London
.
9.
Ananthasuresh
,
G. K.
, and
Howell
,
L.
, 2005, “
Mechanical Design of Compliant Microsystems—A Perspective and Prospects
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
736
738
.
10.
Han
,
J. S.
,
Muller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J. G.
, 2007, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism with X- and Y-Directional Bistable Curved Beams
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
1198
1203
.
11.
Yi
,
Y. M.
,
Park
,
S. H.
, and
Youn
,
S. K.
, 2000, “
Design of Microstructures of Viscoelastic Composites for Optimal Damping Characteristics
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
4791
4810
.
12.
Inman
,
D. J.
, 1989,
Vibration, With Control, Measurement and Stability
,
Prentice-Hall
,
Englewood Cliffs
.
13.
Sigmund
,
O.
, 1995, “
Tailoring Materials With Prescribed Elastic Properties
,”
Mech. Mater.
0167-6636,
20
, pp.
351
368
.
14.
Prasad
,
J.
, and
Diaz
,
A. R.
,“
Viscoelastic Material Design with Negative Stiffness Components Using Topology Optimization
,” Struct. Multidiscip. Optim., in press.
You do not currently have access to this content.