In this paper, we investigate a methodology for the conceptual synthesis of compliant mechanisms based on a building block approach. The building block approach is intuitive and provides key insight into how individual building blocks contribute to the overall function. We investigate the basic kinematic behavior of individual building blocks and relate this to the behavior of a design composed of building blocks. This serves to not only generate viable solutions but also to augment the understanding of the designer. Once a feasible concept is thus generated, known methods for size and geometry optimization may be employed to fine-tune performance. The key enabler of the building block synthesis is the method of capturing kinematic behavior using compliance ellipsoids. The mathematical model of the compliance ellipsoids facilitates the characterization of the building blocks, transformation of problem specifications, decomposition into subproblems, and the ability to search for alternate solutions. The compliance ellipsoids also give insight into how individual building blocks contribute to the overall kinematic function. The effectiveness and generality of the methodology are demonstrated through two synthesis examples. Using only a limited set of building blocks, the methodology is capable of addressing generic kinematic problem specifications for compliance at a single point and for a single-input, single-output compliant mechanism. A rapid prototype of the latter demonstrates the validity of the conceptual solution.

1.
Kim
,
C. J.
, 2005, “
A Conceptual Approach to the Computational Synthesis of Compliant Mechanisms
,” Ph.D. thesis, University of Michigan.
2.
Awtar
,
S.
, 2004, “
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
,” Sc.D. thesis, Massachusetts Institute of Technology.
3.
Smith
,
S. T.
, and
Chetwynd
,
D. G.
, 1992,
Foundations of Ultraprecision Mechanism Design
,
Gordon and Breach
,
New York
.
4.
Smith
,
S. T.
, 2000,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach
,
New York
.
5.
Blanding
,
D. L.
, 1999,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME
,
New York
.
6.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
1050-0472, in press.
7.
Culpepper
,
M.
, and
Anderson
,
G.
, 2004, “
Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism
,”
Precis. Eng.
0141-6359,
28
, pp.
469
482
.
8.
Hale
,
L.
, 1999, “
Principles and Techniques for Designing Precision Machines
,” Ph.D. thesis, Massachusetts Institute of Technology.
9.
Lipkin
,
H.
, and
Duffy
,
J.
, 1985, “
The Elliptic Polarity of Screws
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
377
387
.
10.
Lipkin
,
H.
, and
Duffy
,
J.
, 1988, “
Hybrid Twist and Wrench Control for a Robotic Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
138
144
.
11.
Loncaric
,
J.
, 1985, “
Geometrical Analysis of Compliant Mechanisms in Robotics
,” Ph.D. thesis, Division of Applied Sciences, Harvard University.
12.
Brockett
,
R.
, and
Stokes
,
A.
, 1991, “
On the Synthesis of Compliant Mechanisms
,”
Proceedings of the 1991 IEEE International Conference of Robotics and Automation
,
Sacramento, CA
, Apr. 1991.
13.
Ciblak
,
N.
, and
Lipkin
,
H.
, 1998, “
Synthesis of Stiffness by Springs
,”
Proceedings of the 1998 ASME Design Engineering Technical Conferences
, Paper No. DETC98/MECH-5879.
14.
Huang
,
S.
, and
Schimmels
,
J.
, 2000, “
The Eigenscrew Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
2
), Apr. 2000.
15.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
16.
Murphy
,
M. D.
,
Midha
,
A.
, and
Howell
,
L. L.
, 1996, “
The Topological Synthesis of Compliant Mechanisms
,”
Mech. Mach. Theory
0094-114X,
31
(
2
), pp.
185
199
.
17.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
, 2003, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
253
261
.
18.
Canfield
,
S.
, and
Frecker
,
M.
, 2000, “
Topology Optimization of Compliant Mechanical Amplifiers for Piezoelectric Actuators
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
4
), pp.
269
279
.
19.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
229
234
.
20.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
12
), pp.
2683
2706
.
21.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization—Theory, Method and Applications
,
Springer
,
New York
.
22.
Kawamoto
,
A.
,
Bendsoe
,
M. P.
, and
Sigmund
,
O.
, “
Planar Articulated Mechanism Design by Graphs Theoretical Enumeration
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49–50
), pp.
6605
6627
.
23.
Lu
,
K. J.
, and
Kota
,
S.
, 2006, “
Toplogy and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
1080
1091
.
24.
Chiou
,
S.-J.
, and
Kota
,
S.
, 1999, “
Automated Conceptual Design of Mechanisms
,”
Mech. Mach. Theory
0094-114X,
34
, pp.
467
495
.
25.
Moon
,
Y.-M.
, and
Kota
,
S.
, 2002, “
Automated Synthesis of Mechanisms Using Dual-Vector Algebra
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
143
166
.
26.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y. M.
, 2005, “
An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
542
550
.
27.
Lim
,
H.
, and
Tanie
,
K.
, 2000, “
Human Safety Mechanisms of Human-Friendly Robots: Passive Viscoelastic Trunk and Passively Movable Base
,”
Int. J. Robot. Res.
0278-3649,
19
, pp.
307
335
.
28.
Okada
,
M.
,
Nakamura
,
Y.
, and
Ban
,
S.
, 2001, “
Design of Programmable Passive Compliance Shoulder Mechanism
,”
Proceedings of the 2001 IEEE International Conferences on Robotics and Automation
.
29.
Gravagne
,
I. A.
, and
Walker
,
I. D.
, 2002, “
Manipulability, Force, and Compliance Analysis of Planar Continuum Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
2
), pp.
263
273
.
30.
Culpepper
,
M. L.
, 2004, “
Design of Quasi-Kinematic Couplings
,”
Precis. Eng.
0141-6359,
28
, pp.
338
357
.
31.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
, 2001,
Mechanism Design
, 4th ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.