Many flexible multibody applications are characterized by high inertia forces and motion discontinuities. Because of these characteristics, problems can be encountered when large displacement finite element formulations are used in the simulation of flexible multibody systems. In this investigation, the performance of two different large displacement finite element formulations in the analysis of flexible multibody systems is investigated. These are the incremental corotational procedure proposed in an earlier article (Rankin, C. C., and Brogan, F. A., 1986, ASME J. Pressure Vessel Technol., 108, pp. 165–174) and the non-incremental absolute nodal coordinate formulation recently proposed (Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd ed., Cambridge University Press, Cambridge). It is demonstrated in this investigation that the limitation resulting from the use of the infinitesmal nodal rotations in the incremental corotational procedure can lead to simulation problems even when simple flexible multibody applications are considered. The absolute nodal coordinate formulation, on the other hand, does not employ infinitesimal or finite rotation coordinates and leads to a constant mass matrix. Despite the fact that the absolute nodal coordinate formulation leads to a non-linear expression for the elastic forces, the results presented in this study, surprisingly, demonstrate that such a formulation is efficient in static problems as compared to the incremental corotational procedure. The excellent performance of the absolute nodal coordinate formulation in static and dynamic problems can be attributed to the fact that such a formulation does not employ rotations and leads to exact representation of the rigid body motion of the finite element. [S1050-0472(00)00604-8]

1.
Argyris
,
J. H.
,
Balmer
,
H.
,
Doltsinis
,
J. St
,
Dunne
,
P. C.
,
Haase
,
M.
,
Kleiber
,
M.
,
Malejannakis
,
G. A.
,
Mlejnek
,
H.-P.
,
Mu¨ller
,
M.
, and
Scharpf
,
D. W.
,
1979
, “
Finite Element Method—The Natural Approach
,”
Comput. Methods Appl. Mech. Eng.
,
17
, pp.
1
106
.
2.
Bathe, K. J., 1996, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New Jersey.
3.
Belytschko
,
T.
, and
Hsieh
,
B. J.
,
1973
, “
Non-Linear Transient Finite Element Analysis with Convected Coordinates
,”
Int. J. Numer. Methods Eng.
,
7
, pp.
255
271
.
4.
Hughes
,
T. J. R.
, and
Winget
,
J.
,
1980
, “
Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large-Deformation Analysis
,”
Int. J. Numer. Methods Eng.
,
15
, pp.
1862
1867
.
5.
Reddy
,
J. N.
, and
Singh
,
I. R.
,
1981
, “
Large Deflections and Large-Amplitude Free Vibrations of Straight and Curved Beams
,”
Int. J. Numer. Methods Eng.
,
17
, pp.
829
852
.
6.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part I
,”
J. Appl. Mech.
,
53
, pp.
849
854
.
7.
Kane
,
T. R.
,
Ryan
,
R. R.
, and
Banerjee
,
A. K.
,
1987
, “
Dynamics of a Cantilever Beam Attached to a Moving Base
,”
AIAA J. Guid. Control., Dynam.
,
10
, No.
2
, pp.
139
151
.
8.
Kortum
,
W.
,
Sachau
,
D.
, and
Schwertassek
,
R.
,
1996
, “
Analysis and Design of Flexible and Controlled Multibody Systems with SIMPACK
,”
Space Technol. Ind. Commer. Appl.
,
16
, pp.
355
364
.
9.
Likins
,
P. W.
,
1967
, “
Modal Method for Analysis of Free Rotations of Spacecraft
,”
AIAA J.
,
5
, No.
7
, pp.
1304
1308
.
10.
Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd ed., Cambridge University Press, Cambridge.
11.
Shabana
,
A. A.
,
1996
, “
Finite Element Incremental Approach and Exact Rigid Body Inertia
,”
ASME J. Mech. Des.
,
118
, pp.
829
852
.
12.
Rankin
,
C. C.
, and
Brogan
,
F. A.
,
1986
, “
An Element Independent Corotational Procedure for the Treatment of Large Rotations
,”
ASME J. Pressure Vessel Technol.
,
108
, pp.
165
174
.
13.
Argyris
,
J.
,
1982
, “
An Excursion Into Large Rotations
,”
Comput. Methods Appl. Mech. Eng.
,
32
, pp.
85
155
.
14.
Hsiao
,
K. M.
, and
Jang
,
J. Y.
,
1991
, “
Dynamic Analysis of Planar Flexible Mechanism by Co-rotational Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
87
, pp.
1
14
.
15.
Behdinan
,
K.
,
Stylianou
,
M. C.
, and
Tabarrok
,
B.
,
1998
, “
Co-rotational Dynamic Analysis of Flexible Beams
,”
Comput. Methods Appl. Mech. Eng.
,
154
, pp.
151
161
.
16.
ANSYS User’s Manual, Volume IV, Theory, ANSYS Release 5.4, 1997.
17.
Campanelli, M., 1998, “Computational Methods for the Dynamics and Stress Analysis of Multibody Track Chains,” Ph.D. thesis, University of Illinois at Chicago, Chicago.
18.
Timoshenko, S., and Gere, J. M., 1961, Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York.
19.
Von Dombrowski, S., 1997, “Modellierung von Balken bei groβen Verformungen fu¨r ein Kraftreflektierendes Eingabegera¨t,” Diploma Thesis, German Aerospace Agency and University of Stuttgart.
You do not currently have access to this content.