Abstract

An alternative finite element formulation to predict ductile damage and fracture in highly deformable materials is presented. For this purpose, a finite-strain elastoplastic model based on the Gurson–Tvergaard–Needleman (GTN) formulation is employed, in which the level of damage is described by the void volume fraction (or porosity). The model accounts for large strains, associative plasticity, and isotropic hardening, as well as void nucleation, coalescence, and material failure. To avoid severe damage localization, a nonlocal enrichment is adopted, resulting in a mixed finite element whose degrees-of-freedom are the current positions and nonlocal porosity at the nodes. In this work, 2D triangular elements of linear-order and plane-stress conditions are used. Two systems of equations have to be solved: the global variables system, involving the degrees-of-freedom; and the internal variables system, including the damage and plastic variables. To this end, a new numerical strategy has been developed, in which the change in material stiffness due to the evolution of internal variables is embedded in the consistent tangent operator regarding the global system. The performance of the proposed formulation is assessed by three numerical examples involving large elastoplastic strains and ductile fracture. Results confirm that the present formulation is capable of reproducing fracture initiation and evolution, as well as necking instability. Convergence analysis is also performed to evaluate the effect of mesh refinement on the mechanical response. In addition, it is demonstrated that the nonlocal parameter alleviates damage localization, providing smoother porosity fields.

References

1.
Cordeiro
,
S. G. F.
,
2018
, “
Contribuições às análises de fratura e fadiga de componentes tridimensionais pelo Método dos Elementos de Contorno Dual
,”
Ph.D. dissertation
,
University of São Paulo
,
São Carlos, Brazil
.
2.
Cruz
,
J. R. B.
,
1998
, “
Procedimento analítico para previsão do comportamento estrutural de componentes trincados
,”
Ph.D. dissertation
,
University of São Paulo
,
São Paulo, Brazil
.
3.
Oliveira
,
J. P. P.
, and
Andrade
,
J. R.
,
2019
, “
Análise estrutural dinâmica de eixos rotativos sujeitos a entalhes
,”
Rev. Perquirere
,
2
(
16
), pp.
82
98
.
4.
Jesus
,
J. P.
,
2022
,
Falha por fadiga em componentes mecânicos: um estudo de caso
,
Graduate Monograph, Federal Institute of Education, Science and Technology of Amazonas
,
Manaus, Brazil
.
5.
Callister
,
W. D.
, Jr
, and
Rethwisch
,
D. G.
,
2020
,
Fundamentals of Materials Science and Engineering: An Integrated Approach
,
John Wiley and Sons
,
Hoboken, NJ
.
6.
Sahadi
,
J. V.
,
2015
, “
Estudo da fratura dúctil através de modelos dependentes do terceiro invariante do tensor desviador
,”
Master’s dissertation
,
University of Brasília
,
Brasília, Brazil
.
7.
Da Rocha
,
G. B. T.
,
Pereira
,
L. M. M.
,
Farias
,
L. D. P.
,
Gandur
,
N. L.
,
Flores
,
P. M.
,
de Oliveira
,
R. M.
, and
da Silva
,
M. H. P.
,
2016
, “
Análise fractográfica em MEV—fratura dúctil × fratura frágil
,”
Ciênc. Tecnol.
,
33
(
2
), p.
85
.
8.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
9.
Hancock
,
J. W.
, and
Mackenzie
,
A. C.
,
1976
, “
On the Mechanisms of Ductile Fracture in High-Strength Steels Subjected to Multiaxial Stress-States
,”
J. Mech. Phys. Solids
,
24
(
2–3
), pp.
147
169
.
10.
Wolf
,
J.
,
2016
, “
Numerical Treatment of Crack Propagation in Ductile Structural Materials Under Severe Conditions
,”
Ph.D. dissertation
,
Université Fédérale Toulouse Midi-Pyrénées
,
Toulouse, France
, https://hal.science/tel-01558612/, Accessed June 15, 2024
11.
Nahshon
,
K.
, and
Hutchinson
,
J.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. A
,
27
(
1
), pp.
1
17
.
12.
Xue
,
L.
,
2008
, “
Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials
,”
Eng. Fract. Mech.
,
75
(
11
), pp.
3343
3366
.
13.
Hütter
,
G.
,
Linse
,
T.
,
Roth
,
S.
,
Mühlich
,
U.
, and
Kuna
,
M.
,
2014
, “
A Modeling Approach for the Complete Ductile–Brittle Transition Region: Cohesive Zone in Combination With a Non-Local Gurson-Model
,”
Int. J. Fract.
,
185
(
1–2
), pp.
129
153
.
14.
Shakoor
,
M.
,
Trejo Navas
,
V. M.
,
Munoz
,
D. P.
,
Bernacki
,
M.
, and
Bouchard
,
P.O.
,
2019
, “
Computational Methods for Ductile Fracture Modeling at the Microscale
,”
Arch. Comput. Methods Eng.
,
26
, pp.
1153
1192
.
15.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
J. Eng. Mater. Technol.
,
107
(
1
), pp.
83
89
.
16.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.
17.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
18.
Fincato
,
R.
, and
Tsutsumi
,
S.
,
2022
, “
Ductile Fracture Modeling of Metallic Materials: A Short Review
,”
Frat. Integrita Strutt.
,
16
(
59
), pp.
1
17
.
19.
Delgado-Morales
,
L. L.
,
Malcher
,
L.
, and
Alves de Souza
,
T. R.
,
2023
, “
Numerical Evaluation of the Ductile Fracture for AA6101-T4 and AISI 4340 Alloys Using the Lemaitre and Gurson Models
,” INGENIARE-Revista Chilena de Ingeniería, 31.
20.
Nègre
,
P.
,
Steglich
,
D.
, and
Brocks
,
W.
,
2004
, “
Crack Extension in Aluminium Welds: A Numerical Approach Using the Gurson–Tvergaard–Needleman Model
,”
Eng. Fract. Mech.
,
71
(
16–17
), pp.
2365
2383
.
21.
Teng
,
B.
,
Wang
,
W.
,
Liu
,
Y.
, and
Yuan
,
S.
,
2014
, “
Bursting Prediction of Hydroforming Aluminium Alloy Tube Based on Gurson-Tvergaard-Needleman Damage Model
,”
Procedia Eng.
,
81
(
16–17
), pp.
2211
2216
.
22.
Wang
,
T.
,
Wen
,
J. F.
,
Kim
,
Y. J.
, and
Tu
,
S. T.
,
2020
, “
Ductile Tearing Analyses of Cracked TP304 Pipes Using the Multiaxial Fracture Strain Energy Model and the Gurson–Tvergaard–Needleman Model
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
10
), pp.
2402
2415
.
23.
Pascon
,
J. P.
, and
Waisman
,
H.
,
2021
, “
A Thermodynamic Framework to Predict Ductile Damage in Thermoviscoplastic Porous Metals
,”
Mech. Mater.
,
153
, p.
103701
.
24.
Yildiz
,
R. A.
,
2023
, “
Numerical Analysis of the Damage Evolution of DP600 Steel Using Gurson–Tvergaard–Needleman Model
,”
Steel Res. Int.
,
94
(
1
), p.
2200147
.
25.
Pascon
,
J. P.
, and
Waisman
,
H.
,
2022
, “
A Gradient-Enhanced Formulation for Thermoviscoplastic Metals Accounting for Ductile Damage
,”
Finite Elem. Anal. Des.
,
200
, p.
103704
.
26.
Broumand
,
P.
, and
Khoei
,
A. R.
,
2015
, “
X-FEM Modeling of Dynamic Ductile Fracture Problems with a Nonlocal Damage-Viscoplasticity Model
,”
Finite Elem. Anal. Des.
,
99
, pp.
49
67
.
27.
Tandogan
,
I. T.
, and
Yalcinkaya
,
T. U. N. C. A. Y.
,
2022
, “
Development and Implementation of a Micromechanically Motivated Cohesive Zone Model for Ductile Fracture
,”
Int. J. Plast.
,
158
, p.
103427
.
28.
Dorduncu
,
M.
,
Ren
,
H.
,
Zhunag
,
X.
,
Silling
,
S.
,
Madenci
,
E.
, and
Rabczuk
,
T.
,
2024
, “
A Review of Peridynamic Theory and Nonlocal Operators along withTheir Computer Implementations
,”
Comp. Struc.
,
299
, p.
107395
.
29.
Zhuang
,
X.
, et al
,
2022
, “
Phase Field Modeling and Computer Implementation: A Review
,”
Eng. Frac. Mech.
,
262
, p.
108234
.
30.
Nguyen
,
V.P.
, et al
,
2008
, “
Meshless Methods: a Review and Computer Implementation Aspects
,”
Math. Comput. Simul.
,
79
(
3
), pp.
763
813
.
31.
Piska
,
R.
, et al
,
2024
, “
Recent Trends in Computational Damage Models: An Overview
,”
Theor. Appl. Frac. Mech.
,
132
, p. 104494.
32.
Svedberg
,
T.
, and
Runesson
,
K.
,
1997
, “
A Thermodynamically Consistent Theory of Gradient-Regularized Plasticity Coupled to Damage
,”
Int. J. Plast.
,
13
(
6–7
), pp.
669
696
.
33.
Reusch
,
F.
,
Svendsen
,
B.
, and
Klingbeil
,
D.
,
2003
, “
A Non-Local Extension of Gurson-Based Ductile Damage Modeling
,”
Comput. Mater. Sci.
,
26
, pp.
219
229
.
34.
Morgeneyer
,
T. F.
,
Taillandier-Thomas
,
T.
,
Helfen
,
L.
,
Baumbach
,
T.
,
Sinclair
,
I.
,
Roux
,
S.
, and
Hild
,
F.
,
2014
, “
In Situ 3-D Observation of Early Strain Localization During Failure of Thin Al Alloy (2198) Sheet
,”
Acta Mater.
,
69
, pp.
78
91
.
35.
Pijaudier-Cabot
,
G.
, and
Bazant
,
Z. P.
,
1987
, “
Nonlocal Damage Theory
,”
J. Eng. Mech.
,
113
, pp.
1512
1533
. . ).
36.
Leclerc
,
J.
,
Nguyen
,
V. D.
,
Pardoen
,
T.
, and
Noels
,
L.
,
2020
, “
A Micromechanics-Based Non-Local Damage to Crack Transition Framework for Porous Elastoplastic Solids
,”
Int. J. Plast.
,
127
, p.
102631
.
37.
Forest
,
S.
, and
Sievert
,
R.
,
2006
, “
Nonlinear Microstrain Theories
,”
Int. J. Sol. Struc.
,
43
(
24
).
38.
Miehe
,
C.
,
Kienle
,
D.
,
Aldakheel
,
F.
, and
Teichtmeister
,
S.
,
2016
, “
Phase Field Modeling of Fracture in Porous Plasticity: A Variational Gradient-Extended Eulerian Framework for the Macroscopic Analysis of Ductile Failure
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
3
50
.
39.
Besson
,
J.
,
2010
, “
Continuum Models of Ductile Fracture: A Review
,”
Int. J. Damage Mech.
,
19
(
1
), pp.
3
52
. .
40.
Arndt
,
S.
,
Klingbeil
,
D.
, and
Svendsen
,
B.
,
1997
, “
On the Simulation of Warm-Prestressing and Ductile Crack Extension by Constitutive Modeling
,”
Transactions of the 14th International Conference on Structural Mechanics in Reactor Technology
,
Lyon, France
,
Aug. 17–22
, .
41.
Håkansson
,
P.
,
Wallin
,
M.
, and
Ristinmaa
,
M.
,
2015
, “
Thermomechanical Response of Non-Local Porous Material
,”
Int. J. Plast.
,
22
(
11
), pp.
2066
2090
.
42.
Huespe
,
A. E.
,
Needleman
,
A.
,
Oliver
,
J.
, and
Sánchez
,
P. J.
,
2012
, “
A Finite Strain, Finite Band Method for Modeling Ductile Fracture
,”
Int. J. Plast.
,
28
(
1
), pp.
53
69
.
43.
Klingbeil
,
D.
,
Svendsen
,
B.
, and
Reusch
,
F.
,
2016
, “
Gurson-Based Modelling of Ductile Damage and Failure During Cyclic Loading Processes at Large Deformation
,”
Eng. Fract. Mech.
,
160
, pp.
95
123
.
44.
Aldakheel
,
F.
,
Wriggers
,
P.
, and
Miehe
,
C.
,
2018
, “
A Modified Gurson-Type Plasticity Model at Finite Strains: Formulation, Numerical Analysis and Phase-Field Coupling
,”
Comput. Mech.
,
62
(
4
), pp.
815
833
.
45.
Chen
,
Y.
,
Lorentz
,
E.
, and
Besson
,
J.
,
2020
, “
Crack Initiation and Propagation in Small-Scale Yielding Using a Nonlocal GTN Model
,”
Int. J. Plast.
,
130
, p.
102701
.
46.
Kröner
,
E.
,
1959
, “
Allgemeine kontinuumstheorie der versetzungen und eigenspannungen
,”
Arch. Ration. Mech. Anal.
,
4
(
1
), pp.
273
334
.
47.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.
48.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Ellis Horwood Ltd
,
Chichester, England
.
49.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics—A Continuum Approach for Engineering
,
John Wiley & Sons Ltd
,
Chichester, England
.
50.
McAuliffe
,
C.
, and
Waisman
,
H.
,
2013
, “
Mesh Insensitive Formulation for Initiation and Growth of Shear Bands Using Mixed Finite Elements
,”
Comput. Mech.
,
51
(
5
), pp.
807
823
.
51.
Pascon
,
J. P.
, and
Coda
,
H. B.
,
2013
, “
Large Deformation Analysis of Elastoplastic Homogeneous Materials via High Order Tetrahedral Finite Elements
,”
Finite Elem. Anal. Des.
,
76
, pp.
21
38
.
52.
Stumpf
,
F. T.
,
2009
, “
Avaliação de um modelo hiperelástico incompressível: análise de restrições, implementação e otimização de parâmetros constitutivos
,”
Master’s dissertation
,
Federal University of Rio Grande do Sul
,
Porto Alegre, Brazil
.
53.
Noll
,
W.
,
Coleman
,
B. D.
, and
Noll
,
W.
,
1974
, “The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity,”
The Foundations of Mechanics and Thermodynamics: Selected Papers
,
Springer-Verlag
,
Berlin
, pp.
145
156
.
54.
Svendsen
,
B.
,
1998
, “
A Thermodynamic Formulation of Finite-Deformation Elastoplasticity With Hardening Based on the Concept of Material Isomorphism
,”
Int. J. Plast.
,
14
(
6
), pp.
473
488
.
55.
Pascon
,
J. P.
,
2012
, “
Sobre modelos constitutivos não lineares para materiais com gradação funcional exibindo grandes deformações: implementação numérica em formulação não linear geométrica
,”
Ph.D. dissertation
,
University of São Paulo
,
São Carlos, Brazil
.
56.
Pascon
,
J. P.
,
2022
, “
A Large Strain One-Dimensional Ductile Damage Model for Space Truss Analysis Considering Gurson’s Porous Plasticity, Thermal Effects and Mixed Hardening
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
5
), p.
186
.
57.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
.
58.
Burbano Sandoval
,
C. F.
,
2014
, “
Modelos elasto-plásticos e sua influência no processo de dimensionamento de componentes mecânicos
,”
Master’s dissertation
,
University of Brasília
,
Brasília, Brazil
.
59.
Malcher
,
L.
,
2012
, “
Da mecânica do dano contínuo: uma evolução do modelo de Lemaitre para redução da dependência do ponto de calibração
,”
Ph.D. dissertation
,
University of Brasília
,
Brasília, Brazil
.
60.
Sternberg Haimenis
,
T.
,
2021
,
Modelagem e simulação do transiente de encruamento isotrópico em materiais metálicos
,
Graduate monograph, Pontifical Catholic University of Rio de Janeiro
,
Rio de Janeiro, Brazil
.
61.
Chu
,
C.
, and
Needleman
,
A.
,
1980
, “
Void Nucleation Effects in Biaxially Stretched Sheets
,”
J. Eng. Mater. Technol.
,
102
(
3
), pp.
249
256
.
62.
Ferreira
,
A. D. B. L.
,
de Oliveira Ferreira
,
B. A.
,
Carvalho
,
P.
, and
Freitas
,
S.
,
2014
, “
Modelação e Simulação Numérica de um Ensaio de Expansão de Furo
,”
Master’s dissertation
,
University of Porto
,
Porto, Portugal
.
63.
Amaral
,
R.
,
Santos
,
A. D.
,
Lopes
,
A. B.
, and
Souza
,
J. A.
,
2015
, “
Determinação da curva de encruamento usando o ensaio uniaxial de tração e o ensaio hidráulico de expansão biaxial—aplicação aos aços DP500, DP600 E DP780
,”
Congresso de Métodos Numéricos em Engenharia
,
Lisboa, Portugal
,
June 29– July 2
.
64.
Rodrigues
,
C. A. B.
,
2012
, “
Determinação da Lei de Encruamento de Chapas Metálicas Anisotrópicas com recurso ao ensaio de expansão em matrizes circular e elíptica sob Pressão Hidráulica
,”
Master’s dissertation
,
University of Coimbra
,
Coimbra, Portugal
.
65.
Pascon
,
J. P.
,
2008
, “
Modelos constitutivos para materiais hiperelásticos: estudo e implementação computacional
,”
Master’s dissertation
,
University of São Paulo
,
São Carlos, Brazil
, https://teses.usp.br/teses/disponiveis/18/18134/tde-17042008-084851/pt-br.php
66.
Geuzaine
,
C.
, and
Remacle
,
J. F.
,
2009
, “
Gmsh: A 3-d Finite Element Mesh Generator With Built-In Pre-and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
67.
Brokken
,
D.
,
1999
, “
Numerical Modelling of Ductile Fracture in Blanking
,”
Ph.D. dissertation
,
Technische Universiteit Eindhoven
,
Eindhoven, Netherlands
.
68.
Mediavilla
,
J.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2006
, “
A Robust and Consistent Remeshing-Transfer Operator for Ductile Fracture Simulations
,”
Comput. Struct.
,
84
(
8–9
), pp.
604
623
.
69.
Benzerga
,
A. A.
,
Leblond
,
J. B.
,
Needleman
,
A.
, and
Tvergaard
,
V.
,
2016
, “
Ductile Failure Modeling
,”
Int. J. Fract.
,
201
(
1
), pp.
29
80
.
70.
Reddi
,
D.
,
Areej
,
V. K.
, and
Keralavarma
,
S. M.
,
2019
, “
Ductile Failure Simulations Using a Multi-Surface Coupled Damage-Plasticity Model
,”
Int. J. Plast.
,
118
, pp.
190
214
.
71.
Nguyen
,
V. D.
,
Pardoen
,
T.
, and
Noels
,
L.
,
2020
, “
A Nonlocal Approach of Ductile Failure Incorporating Void Growth, Internal Necking, and Shear Dominated Coalescence Mechanisms
,”
J. Mech. Phys. Solids
,
137
, p.
103891
.
72.
Li
,
H.
,
Fu
,
M. W.
,
Lu
,
J.
, and
Yang
,
H.
,
2011
, “
Ductile Fracture: Experiments and Computations
,”
Int. J. Plast.
,
27
(
2
), pp.
147
180
.
73.
Miehe
,
C.
,
Aldakheel
,
F.
, and
Teichtmeister
,
S.
,
2017
, “
Phase-Field Modeling of Ductile Fracture at Finite Strains: A Robust Variational-Based Numerical Implementation of a Gradient-Extended Theory by Micromorphic Regularization
,”
Int. J. Numer. Methods Eng.
,
111
(
9
), pp.
816
863
.
You do not currently have access to this content.