Abstract

The Johnson–Cook (JC) flow stress model can simply express the strain-rate and temperature dependencies of the flow stress. We previously proposed a concept of a simple identification method for material constants in the JC model associated with the strain-rate and temperature sensitivities (JC parameters C and m) at high-strain rates. However, several issues still exist in our method for practical use. In this study, we modified our method to identify both the JC parameters C and m. The fundamental concept was formulated based on the requirement that the normalized indentation depths obtained from the ball impact and instrumented ball indentation tests are equal to each other. In addition, the conversion factor was derived to transfer from the impact velocity to the strain rate. The ball indentation and impact analyses based on a finite element method were conducted to verify the established method. The analysis results obtained under idealized conditions demonstrated that C and m can be accurately identified using the established method, even at exceeding 104 s−1. Changes in the radius of the impactor are more effective in obtaining different strain rates than changes in the impact velocity because the identification accuracy can be ensured at lower than 200 m/s.

References

1.
Jordan
,
J. L.
,
Siviour
,
C. R.
,
Sunny
,
G.
,
Bramlette
,
C.
, and
Spowart
,
J. E.
,
2013
, “
Strain Rate-Dependant Mechanical Properties of OFHC Copper
,”
J. Mater. Sci.
,
48
(
20
), pp.
7134
7141
.
2.
Salvado
,
F. C.
,
Teixeira-Dias
,
F.
,
Walley
,
S. M.
,
Lea
,
L. J.
, and
Cardoso
,
J. B.
,
2017
, “
A Review on the Strain Rate Dependency of the Dynamic Viscoplastic Response of FCC Metals
,”
Prog. Mater. Sci.
,
88
, pp.
186
231
.
3.
Zubelewicz
,
A.
,
2018
, “
Metal Behavior in the Extremes of Dynamics
,”
Sci. Rep.
,
8
(
1
), p.
5162
.
4.
Tiamiyu
,
A. A.
,
Szpunar
,
J. A.
, and
Odeshi
,
A. G.
,
2019
, “
Strain Rate Sensitivity and Activation Volume of AISI 321 Stainless Steel Under Dynamic Impact Loading: Grain Size Effect
,”
Mater. Charact.
,
154
, pp.
7
19
.
5.
Jia
,
B.
,
Rusinek
,
A.
,
Pesci
,
R.
,
Bahi
,
S.
, and
Bernier
,
R.
,
2020
, “
Thermo-Viscoplastic Behavior of 304 Austenitic Stainless Steel at Various Strain Rates and Temperatures: Testing, Modeling and Validation
,”
Int. J. Mech. Sci.
,
170
, p.
105356
.
6.
Nicholas
,
J. F.
,
1959
, “
The Dissipation of Energy During Plastic Deformation
,”
Acta Metall.
,
7
(
8
), pp.
544
548
.
7.
Mason
,
J. J.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
1994
, “
On the Strain and Strain Rate Dependence of the Fraction of Plastic Work Converted to Heat: An Experimental Study Using High Speed Infrared Detectors and the Kolsky Bar
,”
Mech. Mater.
,
17
(
2–3
), pp.
135
145
.
8.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Modeling and Data for Metals Subjected to Large Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr. 19–21
, pp.
541
548
.
9.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
(
5
), pp.
1816
1825
.
10.
Tanimura
,
S.
,
Hayashi
,
H.
,
Yamamoto
,
T.
, and
Mimura
,
K.
,
2009
, “
Dynamic Tensile Properties of Steels and Aluminum Alloys for a Wide Range of Strain Rates and Strain
,”
J. Solid Mech. Mater. Eng.
,
3
(
12
), pp.
1263
1273
.
11.
Gao
,
C. Y.
, and
Zhang
,
L. C.
,
2012
, “
Constitutive Modelling of Plasticity of FCC Metals Under Extremely High Strain Rates
,”
Int. J. Plast.
,
32–33
, pp.
121
133
.
12.
Huh
,
H.
,
Ahn
,
K.
,
Lim
,
J. H.
,
Kim
,
J. W.
, and
Park
,
L. J.
,
2014
, “
Evaluation of Dynamic Hardening Models for BCC, FCC, and HCP Metals at a Wide Range of Strain Rates
,”
J. Mater. Process. Technol.
,
214
(
7
), pp.
1326
1340
.
13.
Kolsky
,
H.
,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. Sect. B
,
62
(
11
), pp.
676
700
.
14.
Zhong
,
W. Z.
,
Rusinek
,
A.
,
Jankowiak
,
T.
,
Abed
,
F.
,
Bernier
,
R.
, and
Sutter
,
G.
,
2015
, “
Influence of Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System
,”
Tribol. Int.
,
90
, pp.
1
14
.
15.
Prabowo
,
D. A.
,
Kariem
,
M. A.
, and
Gunawan
,
L.
,
2017
, “
The Effect of Specimen Dimension on the Results of the Split-Hopkinson Tension Bar Testing
,”
Procedia Eng.
,
173
, pp.
608
614
.
16.
Sudheera
,
Rammohan
,
Y. S.
, and
Pradeep
,
M. S.
,
2018
, “
Split Hopkinson Pressure Bar Apparatus for Compression Testing: A Review
,”
Mater. Today: Proc.
,
5
(
1
), pp.
2824
2829
.
17.
Kariem
,
M. A.
,
Santiago
,
R. C.
,
Govender
,
R.
,
Shu
,
D. W.
,
Ruan
,
D.
,
Nurick
,
G.
,
Alves
,
M.
,
Lu
,
G.
, and
Langdon
,
G. S.
,
2019
, “
Round-Robin Test of Split Hopkinson Pressure Bar
,”
Int. J. Impact Eng.
,
126
, pp.
62
75
.
18.
Francisco
,
A.
,
Tenreiroa
,
G.
,
Silvab
,
C. M.
,
Lopesb
,
A. M.
,
Nunesa
,
P. D. P.
,
Carbasa
,
R. J. C.
, and
da Silva
,
L. F. M.
,
2021
, “
Design of a New Pneumatic Impact Actuator of a Split Hopkinson Pressure Bar (SHPB) Setup for Tensile and Compression Testing of Structural Adhesives
,”
Mech. Mach. Theory
,
159
, p.
104289
.
19.
Subhash
,
G.
,
Koeppel
,
B. J.
, and
Chandra
,
A.
,
1999
, “
Dynamic Indentation Hardness and Rate Sensitivity in Metals
,”
ASME J. Eng. Mater. Technol.
,
121
(
3
), pp.
257
263
.
20.
Lu
,
J.
,
Suresh
,
S.
, and
Ravichandran
,
G.
,
2003
, “
Dynamic Indentation for Determining the Strain Rate Sensitivity of Metals
,”
J. Mech. Phys. Solids
,
51
(
11–12
), pp.
1923
1938
.
21.
Jun
,
T. S.
,
Armstrong
,
D. E. J.
, and
Britton
,
T. B.
,
2016
, “
A Nanoindentation Investigation of Local Strain Rate Sensitivity in Dual-Phase Ti Alloys
,”
J. Alloys Compd.
,
672
, pp.
282
291
.
22.
Calle
,
M. A. G.
,
Mazzariol
,
L. M.
, and
Alves
,
M.
,
2018
, “
Strain Rate Sensitivity Assessment of Metallic Materials by Mechanical Indentation Tests
,”
Mater. Sci. Eng. A
,
725
, pp.
274
282
.
23.
Nguyen
,
N. V.
,
Pham
,
T. H.
, and
Kim
,
S. E.
,
2019
, “
Strain Rate-Dependent Behaviors of Mechanical Properties of Structural Steel Investigated Using Indentation and Finite Element Analysis
,”
Mech. Mater.
,
137
, p.
103089
.
24.
Tabor
,
D.
,
1951
,
The Hardness of Metals
,
Oxford University Press
,
Oxford, UK
, Chaps. 4, 5, 8.
25.
Davis
,
C. D.
, and
Hunter
,
S. C.
,
1960
, “
Assessment of the Strain-Rate Sensitivity of Metals by Indentation With Conical Indenters
,”
J. Mech. Phys. Solids
,
8
(
4
), pp.
235
254
.
26.
Tirupataiah
,
Y.
, and
Sundararajan
,
G.
,
1991
, “
A Dynamic Indentation Technique for the Characterization of the High Strain Rate Plastic Flow Behaviour of Ductile Metals and Alloys
,”
J. Mech. Phys. Solids
,
39
(
2
), pp.
243
271
.
27.
Clough
,
R. B.
,
Webb
,
S. C.
, and
Armstrong
,
R. W.
,
2003
, “
Dynamic Hardness Measurements Using a Dropped Ball: With Application to 1018 Steel
,”
Mater. Sci. Eng. A
,
360
(
1–2
), pp.
396
407
.
28.
Sundararajan
,
G.
, and
Tirupataiah
,
Y.
,
2006
, “
The Localization of Plastic Flow Under Dynamic Indentation Conditions: I. Experimental Results
,”
Acta Mater.
,
54
(
3
), pp.
565
575
.
29.
Sundararajan
,
G.
, and
Tirupataiah
,
Y.
,
2006
, “
The Localization of Plastic Flow Under Dynamic Indentation Conditions: II. Analysis of Results
,”
Acta Mater.
,
54
(
3
), pp.
577
586
.
30.
Burley
,
M.
,
Campbell
,
J. E.
,
Dean
,
J.
, and
Clyne
,
T. W.
,
2018
, “
Johnson–Cook Parameter Evaluation From Ballistic Impact Data Via Iterative FEM Modelling
,”
Int. J. Impact Eng.
,
112
, pp.
180
192
.
31.
Hassani
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2020
, “
Material Hardness at Strain Rates Beyond 106 s−1 Via High Velocity Microparticle Impact Indentation
,”
Scr. Mater.
,
177
, pp.
198
202
.
32.
Ito
,
K.
, and
Arai
,
M.
,
2021
, “
Simple Estimation Method for Strain Rate Sensitivity Based on the Difference Between the Indentation Sizes Formed by Spherical-Shaped Impactors
,”
Int. J. Mech. Sci.
,
189
, p.
106007
.
33.
Ito
,
K.
, and
Arai
,
M.
,
2021
, “
Proposal of an Estimation Method for Temperature Dependence of Flow Stress in a Wide Range of Strain Rates Based on a Difference Between Indentation Sizes
,”
J. Soc. Mater. Sci. Jpn.
,
70
(
9
), pp.
698
705
.
34.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, Chap. 4.
35.
Ito
,
K.
, and
Arai
,
M.
,
2020
, “
Expanding Cavity Model Combined With Johnson–Cook Constitutive Equation for the Dynamic Indentation Problem
,”
ASME J. Eng. Mater. Technol.
,
142
(
2
), p.
021005
.
36.
Hopkins
,
H. G.
,
1960
,
Progress in Solid Mechanics
,
Vol. 1
,
North-Holland Publishing Co.
,
Amsterdam, NY
, Chap. 3.
37.
Akbari Mousavi
,
S. A. A.
,
Ranjbar Bahadori
,
S.
, and
Shahab
,
A. R.
,
2010
, “
Numerical and Experimental Studies of the Plastic Strains Distribution Using Subsequent Direct Extrusion After Three Twist Extrusion Passes
,”
Mater. Sci. Eng. A
,
527
(
16–17
), pp.
3967
3974
.
38.
Gardenier
,
H. E.
,
Palazotto
,
A. N.
, and
Larson
,
R. A.
,
2012
, “
Development and Investigation of a Slotted Beam Impact Experiment for Intermediate Strain Rates
,”
J. Aerosp. Eng.
,
25
(
2
), pp.
294
307
.
39.
Sato
,
S.
,
1969
, “
Influences of Temperature on the Elastic Moduli of Metals
,”
J. Soc. Mech. Eng.
,
72
(
608
), pp.
1240
1248
.
You do not currently have access to this content.