Abstract

Powder-bed fusion (PBF) process is a subdivision of additive manufacturing (AM) technology where a heat source at a controlled speed selectively fuses regions of a powder-bed material to form three-dimensional (3D) parts in a layer-by-layer fashion. Two of the most commercialized and powerful PBF methods for fabricating full-density metallic parts are the laser PBF (L-PBF) and electron beam PBF (E-PBF) processes. In this study, a multiphysics-based 3D numerical model is developed to compare the thermo-fluid properties of Ti-6Al-4V melt pools formed by the L-PBF and E-PBF processes. The temperature-dependent properties of Ti-6Al-4V alloy and the parameters for the laser and electron beams are incorporated in the model as the user-defined functions (UDFs). The melt-pool geometry and its thermo-fluid behavior are investigated using the finite volume (FV) method, and results for the variations of temperature, thermo-physical properties, velocity, geometry of the melt pool, and cooling rate in the two processes are compared under similar irradiation conditions. For an irradiance level of 26 J/mm3 and a beam interaction time of 1.212 ms, simulation results show that the L-PBF process gives a faster cooling rate (1. 5 K/μs) than that in the E-PBF process (0.74 K/μs). The magnitude of liquid velocity in the melt pool is also higher in L-PBF than that in E-PBF. The numerical model is validated by comparing the simulation results for the melt-pool geometry with the PBF experimental results and comparing the numerical melt-front position with the analytical solution for the classical Stephan problem of melting of a phase-change material (PCM).

References

References
1.
Sames
,
W. J.
,
List
,
F. A.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
. 10.1080/09506608.2015.1116649
2.
Goodridge
,
R.
, and
Ziegelmeier
,
S.
,
2017
, “7—Powder Bed Fusion of Polymers,”
Laser Additive Manufacturing
,
Woodhead Publishing
,
Duxford, UK
, pp.
181
204
. 10.1016/C2014-0-03891-9
3.
Sing
,
S. L.
,
An
,
J.
,
Yeong
,
W. Y.
, and
Wiria
,
F. E.
,
2015
, “
Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs
,”
J. Orthop. Res.
,
34
(
3
), pp.
369
385
. 10.1002/jor.23075
4.
Zhao
,
X.
,
Li
,
S.
,
Zhang
,
M.
,
Liu
,
Y.
,
Sercombe
,
T. B.
, and
Wang
,
S.
,
2016
, “
Comparison of the Microstructures and Mechanical Properties of Ti–6Al–4 V Fabricated by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
95
, pp.
21
31
. 10.1016/j.matdes.2015.12.135
5.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Janaki Ram
,
G. D.
,
Starr
,
T.
, and
Stucker
,
B.
,
2015
, “
Influence of Defects on Mechanical Properties of Ti–6Al–4 V Components Produced by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
86
, pp.
545
554
. 10.1016/j.matdes.2015.07.147
6.
Chastand
,
V.
,
Quaegebeur
,
P.
,
Maia
,
W.
, and
Charkaluk
,
E.
,
2018
, “
Comparative Study of Fatigue Properties of Ti-6Al-4V Specimens Built by Electron Beam Melting (EBM) and Selective Laser Melting (SLM)
,”
Mater. Charact.
,
143
, pp.
76
81
. 10.1016/j.matchar.2018.03.028
7.
Wysocki
,
B.
,
Maj
,
P.
,
Sitek
,
R.
,
Buhagiar
,
J.
,
Kurzydłowski
,
K. J.
, and
Święszkowski
,
W.
,
2017
, “
Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants
,”
Appl. Sci.
,
7
(
7
), pp.
1
20
. 10.3390/app7070657
8.
Gokuldoss
,
P. K.
,
Kolla
,
S.
, and
Eckert
,
J.
,
2017
, “
Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines
,”
Materials (Basel, Switzerland)
,
10
(
6
), pp.
1
12
. 10.3390/ma10060672
9.
Raplee
,
J.
,
Plotkowski
,
A.
,
Kirka
,
M. M.
,
Dinwiddie
,
R.
,
Okello
,
A.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2017
, “
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
,”
Sci. Rep.
,
7
(
43554
), pp.
1
16
. 10.1038/srep43554
10.
Siddiqui
,
S. F.
,
Fasoro
,
A. A.
,
Cole
,
C.
, and
Gordon
,
A. P.
,
2019
, “
Mechanical Characterization and Modeling of Direct Metal Laser Sintered Stainless Steel GP1
,”
ASME J. Eng. Mater. Technol.
,
141
(
3
), p.
031009
. 10.1115/1.4042867
11.
Riedlbauer
,
D.
,
Scharowsky
,
T.
,
Singer
,
R. F.
,
Steinmann
,
P.
,
Körner
,
C.
, and
Mergheim
,
J.
,
2017
, “
Macroscopic Simulation and Experimental Measurement of Melt Pool Characteristics in Selective Electron Beam Melting of Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5
), pp.
1309
1317
. 10.1007/s00170-016-8819-6
12.
Cook
,
P. S.
, and
Murphy
,
A. B.
,
2020
, “
Simulation of Melt Pool Behaviour During Additive Manufacturing: Underlying Physics and Progress
,”
Addit. Manuf.
,
31
(
100909
), pp.
1
23
. 10.1016/j.addma.2019.100909
13.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
,
2018
, “
A Comparative Study Between Selective Laser Melting and Electron Beam Additive Manufacturing Based on Thermal Modeling
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9−15, 2018
, IMECE2018-86428, Vol.
1
,
Advances in Aerospace Technology
, pp.
1
13
.
14.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2015
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1
), pp.
389
405
. 10.1007/s00170-015-7576-2
15.
Qi
,
H.
,
Mazumder
,
J.
, and
Ki
,
H.
,
2006
, “
Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition
,”
J. Appl. Phys.
,
100
(
2
), p.
024903
. 10.1063/1.2209807
16.
Moraitis
,
G. A.
, and
Labeas
,
G. N.
,
2008
, “
Residual Stress and Distortion Calculation of Laser Beam Welding for Aluminum Lap Joints
,”
J. Mater. Process. Technol.
,
198
(
1–3
), pp.
260
269
. 10.1016/j.jmatprotec.2007.07.013
17.
Wang
,
L.
,
Felicelli
,
S.
,
Gooroochurn
,
Y.
,
Wang
,
P. T.
, and
Horstemeyer
,
M. F.
,
2008
, “
Optimization of the LENS® Process for Steady Molten Pool Size
,”
Mater. Sci. Eng., A
,
474
(
1–2
), pp.
148
156
. 10.1016/j.msea.2007.04.119
18.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
. 10.1016/j.ijmachtools.2009.07.004
19.
Liu
,
C.
,
Wu
,
B.
, and
Zhang
,
J.
,
2010
, “
Numerical Investigation of Residual Stress in Thick Titanium Alloy Plate Joined With Electron Beam Welding
,”
Metall. Mater. Trans. B
,
41
(
5
), pp.
1129
1138
. 10.1007/s11663-010-9408-y
20.
Yang
,
J.
,
Sun
,
S.
,
Brandt
,
M.
, and
Yan
,
W.
,
2010
, “
Experimental Investigation and 3D Finite Element Prediction of the Heat Affected Zone During Laser Assisted Machining of Ti–6Al–4 V Alloy
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2215
2222
. 10.1016/j.jmatprotec.2010.08.007
21.
Lacki
,
P.
, and
Adamus
,
K.
,
2011
, “
Numerical Simulation of the Electron Beam Welding Process
,”
Comput. Struct.
,
89
(
11–12
), pp.
977
985
. 10.1016/j.compstruc.2011.01.016
22.
Shen
,
N.
, and
Chou
,
K.
,
2012
, “
Thermal Modeling of Electron Beam Additive Manufacturing Process: Powder Sintering Effects
,”
Proceedings of the ASME Manufacturing Science and Engineering Conference
,
Notre Dame, IN
,
June 4–8, 2012
, MSEC2012-7253, pp.
287
295
.
23.
Cheng
,
B.
,
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061018
. 10.1115/1.4028484
24.
Chen
,
Y. X.
,
Wang
,
X. J.
, and
Chen
,
S. B.
,
2014
, “
The Effect of Electron Beam Energy Density on Temperature Field for Electron Beam Melting
,”
Adv. Mater. Res.
,
900
, pp.
631
638
. 10.4028/www.scientific.net/AMR.900.631
25.
Zäh
,
M. F.
, and
Lutzmann
,
S.
,
2010
, “
Modelling and Simulation of Electron Beam Melting
,”
Product. Eng. Res. Develop.
,
4
(
1
), pp.
15
23
. 10.1007/s11740-009-0197-6
26.
Andreotta
,
R.
,
Ladani
,
L.
, and
Brindley
,
W.
,
2017
, “
Finite Element Simulation of Laser Additive Melting and Solidification of Inconel 718 With Experimentally Tested Thermal Properties
,”
Finite Elem. Anal. Des.
,
135
, pp.
36
43
. 10.1016/j.finel.2017.07.002
27.
Sadowski
,
M.
,
Ladani
,
L.
,
Brindley
,
W.
, and
Romano
,
J.
,
2017
, “
Optimizing Quality of Additively Manufactured Inconel 718 Using Powder Bed Laser Melting Process
,”
Addit. Manuf.
,
11
, pp.
60
70
. 10.1016/j.addma.2016.03.006
28.
Ladani
,
L.
,
Romano
,
J.
,
Brindley
,
W.
, and
Burlatsky
,
S.
,
2017
, “
Effective Liquid Conductivity for Improved Simulation of Thermal Transport in Laser Beam Melting Powder Bed Technology
,”
Addit. Manuf.
,
14
, pp.
13
23
. 10.1016/j.addma.2016.12.004
29.
Wen
,
S.
, and
Shin
,
Y. C.
,
2010
, “
Modeling of Transport Phenomena During the Coaxial Laser Direct Deposition Process
,”
J. Appl. Phys.
,
108
(
4
), p.
044908
. 10.1063/1.3474655
30.
Wang
,
R.
,
Lei
,
Y.
, and
Shi
,
Y.
,
2011
, “
Numerical Simulation of Transient Temperature Field During Laser Keyhole Welding of 304 Stainless Steel Sheet
,”
Opt. Laser Technol.
,
43
(
4
), pp.
870
873
. 10.1016/j.optlastec.2010.10.007
31.
Cho
,
W.
,
Na
,
S.
,
Thomy
,
C.
, and
Vollertsen
,
F.
,
2012
, “
Numerical Simulation of Molten Pool Dynamics in High Power Disk Laser Welding
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
262
275
. 10.1016/j.jmatprotec.2011.09.011
32.
Rai
,
R.
,
Burgardt
,
P.
,
Milewski
,
J.
,
Lienert
,
T.
, and
DebRoy
,
T.
,
2009
, “
Heat Transfer and Fluid Flow During Electron Beam Welding of 21Cr–6Ni–9Mn Steel and Ti–6Al–4 V Alloy
,”
J. Phys. D: Appl. Phys.
,
42
(
2
), p.
02550
. 10.1088/0022-3727/42/2/025503
33.
Rai
,
R.
,
Palmer
,
T. A.
,
Elmer
,
J. W.
, and
Debroy
,
T.
,
2009
, “
Heat Transfer and Fluid Flow During Electron Beam Welding of 304L Stainless Steel Alloy
,”
Weld. J.
,
88
(
3
), pp.
54
61
. 10.1088/0022-3727/42/2/025503
34.
Li
,
J. F.
,
Li
,
L.
, and
Stott
,
F. H.
,
2004
, “
A Three-Dimensional Numerical Model for a Convection-Diffusion Phase Change Process During Laser Melting of Ceramic Materials
,”
Int. J. Heat Mass Trans.
,
47
(
25
), pp.
5523
5539
. 10.1016/j.ijheatmasstransfer.2004.07.024
35.
Chahine
,
G.
,
2011
, “
Application of Digital Engineering in the Development of a Bio-Adaptable Dental Implant
,”
Ph.D. thesis
,
Southern Methodist University
,
Dallas, TX
.
36.
Yuan
,
P.
, and
Gu
,
D.
,
2015
, “
Molten Pool Behaviour and Its Physical Mechanism During Laser PBF of TiC/AlSi10Mg Nanocomposites: Simulation and Experiments
,”
J. Phys. D: Appl. Phys.
,
48
(
3
), p.
035303
. 10.1088/0022-3727/48/3/035303
37.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
,
2016
, “
Thermo-Fluid Characterizations of Ti-6Al-4V Melt Pool in Powder-Bed Electron Beam Additive Manufacturing
,”
Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17, 2016
, IMECE2016-65854, Vol.
1
,
Advances in Aerospace Technology
, pp.
1
9
.
38.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
,
2017
, “
Thermal Analysis of Electron Beam PBF Using Ti-6Al-4V Powder-Bed
,”
Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9, 2017
, IMECE2017-71663, Vol.
1
,
Advances in Aerospace Technology
, pp.
1
13
.
39.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
,
2019
, “
Thermofluid Properties of Ti-6Al-4V Melt Pool in Powder-Bed Electron Beam Additive Manufacturing
,”
ASME J. Eng. Mater. Technol.
,
141
(
4
), p.
041006
. 10.1115/1.4043342
40.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
,
2020
, “
Heat Transfer and Melt-Pool Evolution During Powder-Bed Fusion of Ti-6Al-4V Parts Under Various Laser Irradiation Conditions
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Portland, OR
,
Nov. 16–19, 2020
, IMECE2020-23838, Vol.
1
,
Advances in Aerospace Technology
, pp.
1
10
.
41.
Rahman
,
M. S.
,
Zeng
,
C.
,
Wen
,
H.
,
Guo
,
S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
,
2020
, “
An Investigation on the Melting and Solidification Behavior of Ti64 Powder in the Laser Powder-Bed Fusion Process
,”
Proceedings of the Louisiana EPSCoR RII CIMM 2020 Symposium
,
Baton Rouge, LA
,
July 20, 2020
, pp.
9
12
.
42.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
,
2019
, “
Thermal Behavior and Melt-Pool Dynamics of Cu-Cr-Zr Alloy in Powder-Bed Selective Laser Melting Process
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Vol.
1
,
Advances in Aerospace Technology
,
Salt Lake City, UT
,
Nov. 11–14, 2019
, IMECE2019-11581, pp.
1
9
.
43.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2012
, “
Temperature Distribution and Fluid Flow Modeling of Electron Beam Melting® (EBM)
,”
Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 9–15, 2012
, IMECE2012-89440, Vol.
7
,
Part D, Fluid and Heat Transfer
, pp.
3089
3102
.
44.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting of Ti–6Al–4 V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
. 10.1115/1.4025746
45.
Sih
,
S. S.
, and
Barlow
,
J. W.
,
2004
, “
The Prediction of the Emissivity and Thermal Conductivity of Powder Beds
,”
Part. Sci. Technol.
,
22
(
3
), pp.
291
304
. 10.1080/02726350490501682a
46.
Arce
,
A. N.
,
2012
, “
Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4 V Alloys
,”
Ph.D. thesis
,
North Carolina State University
,
Raleigh, NC
.
47.
Pei
,
Y. T.
,
Ocelik
,
V.
, and
Hosson
,
J. T. M. D.
,
2002
, “
SiCp/Ti6Al4V Functionally Graded Materials Produced by Laser Melt Injection
,”
Acta Mater.
,
50
(
8
), pp.
2035
51
. 10.1016/S1359-6454(02)00049-6
48.
Esen
,
A.
, and
Kutluay
,
S.
,
2002
, “
A Numerical Solution of the Stefan Problem With a Neumann-Type Boundary Condition by Enthalpy Method
,”
Appl. Math. Comput.
,
148
(
2004
), pp.
321
329
. 10.1016/S0096-3003(02)00846-9
49.
Yan
,
W.
,
Ge
,
W.
,
Smith
,
J.
,
Lin
,
S.
,
Kafka
,
O. L.
,
Lin
,
F.
, and
Liu
,
W. K.
,
2016
, “
Multi-scale Modeling of Electron Beam Melting of Functionally Graded Materials
,”
Acta Mater.
,
115
, pp.
403
412
. 10.1016/j.actamat.2016.06.022
50.
Carriere
,
P. R.
, and
Yue
,
S.
,
2017
, “
Energy Absorption During Pulsed Electron Beam Spot Melting of 304 Stainless Steel: Monte-Carlo Simulations and In-Situ Temperature Measurements
,”
Vacuum
,
142
, pp.
114
122
. 10.1016/j.vacuum.2017.04.039
51.
Yan
,
W.
,
Smith
,
J.
,
Ge
,
W.
,
Lin
,
F.
, and
Liu
,
W. K.
,
2015
, “
Multiscale Modeling of Electron Beam and Substrate Interaction: A New Heat Source Model
,”
Comput. Mech.
,
56
(
2
), pp.
265
276
. 10.1007/s00466-015-1170-1
52.
Brown
,
M. S.
, and
Arnold
,
C. B.
,
2010
,
Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification, Laser Precision Microfabrication
, Vol.
135
,
Springer Series in Materials Science Springer
,
Berlin, Germany
, pp.
91
120
.
53.
Ilican
,
S.
,
Caglar
,
M.
, and
Caglar
,
Y.
,
2007
, “
Determination of the Thickness and Optical Constants of Transparent Indium-Doped ZnO Thin Films by the Envelope Method
,”
Materials Science-Poland
,
25
(
3
), pp.
709
718
.
54.
Lisiecki
,
A.
,
2019
, “
Study of Optical Properties of Surface Layers Produced by Laser Surface Melting and Laser Surface Nitriding of Titanium Alloy
,”
Materials
,
12
(
3112
), pp.
1
14
. 10.3390/ma12193112
55.
Ogoh
,
W.
, and
Groulx
,
D.
,
2010
, “
Stefan’s Problem: Validation of a One-Dimensional Solid–Liquid Phase Change Heat Transfer Process
,”
Proceedings of the COMSOL Conference
,
Boston, MA
,
Oct. 7–9, 2010
, pp.
1
6
.
56.
Dilip
,
J. J. S.
,
Zhang
,
S.
,
Teng
,
C.
,
Zeng
,
K.
,
Robinson
,
C.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting
,”
Prog. Addit. Manuf.
,
2
(
3
), pp.
157
167
. 10.1007/s40964-017-0030-2
57.
Matilainen
,
V.
,
Piili
,
H.
,
Salminen
,
A.
, and
Nyrhilä
,
O.
,
2015
, “
Preliminary Investigation of Keyhole Phenomena During Single Layer Fabrication in Laser Additive Manufacturing of Stainless Steel
,”
Phys. Procedia
,
78
, pp.
377
387
. 10.1016/j.phpro.2015.11.052
You do not currently have access to this content.