Abstract

The present work addresses a stochastic computational solution to define the property closures of polycrystalline materials under uncertainty. The uncertainty in material systems arises from the natural stochasticity of the microstructures as a result of the fluctuations in deformation processes. The microstructural uncertainty impacts the performance of engineering components by causing unanticipated anisotropy in properties. We utilize an analytical uncertainty quantification algorithm to describe the microstructural stochasticity and model its propagation on the volume-averaged material properties. The stochastic solution will be integrated into linear programming to generate the property closure that shows all possible values of the volume-averaged material properties under the uncertainty. We demonstrate example applications for stiffness parameters of α-Titanium, and multi-physics parameters (stiffness, yield strength, magnetostrictive strain) of Galfenol. Significant differences observed between stochastic and deterministic closures imply the importance of considering the microstructural uncertainty when modeling and designing materials.

References

References
1.
Allison
,
J.
,
Backman
,
D.
, and
Christodoulou
,
L.
,
2006
, “
Integrated Computational Materials Engineering: A New Paradigm for the Global Materials Profession
,”
J. Minerals, Metals Mater. Soc.
,
10
(
11
), pp.
25
27
. 10.1007/s11837-006-0223-5
2.
Acar
,
P.
, and
Sundararaghavan
,
V.
,
2016
, “
Linear Solution Scheme for Microstructure Design With Process Constraints
,”
AIAA J.
,
54
(
12
), pp.
4022
4031
. 10.2514/1.J055247
3.
Johnson
,
O. K.
, and
Kurniawana
,
C.
,
2018
, “
An Efficient Algorithm for Generating Diverse Microstructure Sets and Delineating Properties Closures
,”
Acta. Mater.
,
147
, pp.
313
321
. 10.1016/j.actamat.2018.01.004
4.
Lemmon
,
T. S.
,
Fullwood
,
D. T.
,
Jensen
,
B. D.
, and
Adams
,
B. L.
,
2007
, “
Heterogeneous Microstructure Sensitive Design for Performance Optimization of MEMS Switch
,”
J. Minerals, Metals Mater. Soc.
,
59
(
9
), pp.
43
48
. 10.1007/s11837-007-0115-3
5.
Adams
,
B. L.
,
Henrie
,
A.
,
Henrie
,
B.
,
Lyon
,
M.
,
Kalidindi
,
S. R.
, and
Garmestani
,
H.
,
2001
, “
Microstructure-Sensitive Design of a Compliant Beam
,”
J. Mech. Phys. Solids.
,
49
(
8
), pp.
1639
1663
. 10.1016/S0022-5096(01)00016-3
6.
Kalidindi
,
S. R.
,
Houskamp
,
J. R.
,
Lyons
,
M.
, and
Adams
,
B. L.
,
2004
, “
Microstructure Sensitive Design of An Orthotropic Plate Subjected to Tensile Load
,”
Int. J. Plast.
,
20
(
8–9
), pp.
1561
1575
. 10.1016/j.ijplas.2003.11.007
7.
Fast
,
T.
,
Knezevic
,
M.
, and
Kalidindi
,
S. R.
,
2008
, “
Application of Microstructure Sensitive Design to Structural Components Produced From Hexagonal Polycrystalline Metals
,”
Comput. Mater. Sci.
,
43
(
2
), pp.
374
383
. 10.1016/j.commatsci.2007.12.002
8.
Sintay
,
D. S.
, and
Adams
,
B. L.
,
2005
, “
Microstructure Design for a Rotating Disk: With Application to Turbine Engines
,”
Proceedings of the IDETC/CIE, 31st Design Automation Conference
,
Long Beach, CA, USA
,
24–28 September
9.
Shi
,
J.
, and
Ghanem
,
R.
,
2003
, “
Nonlocal Modeling of Materials with Random Subscale Interactions
,”
Proceedings of the 16th ASCE Engineering Mechanics Conference
,
Seattle, WA
,
16–18 July
,
University of Washington
.
10.
Sankaran
,
S.
, and
Zabaras
,
N.
,
2006
, “
A Maximum Entropy Approach for Property Prediction of Random Microstructures
,”
Acta Mater.
,
54
(
8
), pp.
2265
2276
. 10.1016/j.actamat.2006.01.015
11.
Creuziger
,
A.
,
Syed
,
K.
, and
Gnaupel-Herold
,
T.
,
2014
, “
Measurement of Uncertainty in Orientation Distribution Function Calculations
,”
Scr. Mater.
,
72–73
, pp.
55
58
. 10.1016/j.scriptamat.2013.10.017
12.
Juan
,
L.
,
Liu
,
G.
,
Wang
,
H.
, and
Ullah
,
A.
,
2011
, “
On the Sampling of Three-dimensional Polycrystalline Microstructures for Distribution Determination
,”
J. Microsc.
,
44
(
2
), pp.
214
222
.
13.
Hiriyur
,
B.
,
Waisman
,
H.
, and
Deodatis
,
G.
,
2011
, “
Uncertainty Quantification in Homogenization of Heterogeneous Microstructures Modeled by XFEM
,”
Int. J. Numer. Methods Eng.
,
88
(
3
), pp.
257
278
. 10.1002/nme.3174
14.
Huyse
,
L.
, and
Maes
,
M. A.
,
2001
, “
Random Field Modeling of Elastic Properties Using Homogenization
,”
J. Eng. Mech.
,
127
(
1
), pp.
27
36
. 10.1061/(ASCE)0733-9399(2001)127:1(27)
15.
Sakata
,
S.
,
Ashida
,
F.
,
Kojima
,
T.
, and
Zako
,
M.
,
2008
, “
Three-Dimensional Stochastic Analysis Using a Perturbation-based Homogenization Method for Elastic Properties of Composite Material Considering Microscopic Uncertainty
,”
Int. J. Solids. Struct.
,
45
(
3–4
), pp.
894
907
. 10.1016/j.ijsolstr.2007.09.008
16.
Sakata
,
S.
,
Ashida
,
F.
, and
Zako
,
M.
,
2008
, “
Kriging-Based Approximate Stochastic Homogenization Analysis for Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
21–24
), pp.
1953
1964
. 10.1016/j.cma.2007.12.011
17.
Kouchmeshky
,
B.
, and
Zabaras
,
N.
,
2009
, “
The Effect of Multiple Sources of Uncertainty on the Convex Hull of Material Properties of Polycrystals
,”
Comput. Mater. Sci.
,
47
(
2
), pp.
342
352
. 10.1016/j.commatsci.2009.08.010
18.
Madrid
,
P. J.
,
Sulsky
,
D.
, and
Lebensohn
,
R. A.
,
2014
, “
Uncertainty Quantification in Prediction of the In-Plane Young’s Modulus of Thin Films with Fiber Texture
,”
J. Microelectromech. Syst.
,
23
(
2
), pp.
380
390
. 10.1109/JMEMS.2013.2279500
19.
Clement
,
A.
,
Soize
,
C.
, and
Yvonnet
,
J.
,
2012
, “
Computational Nonlinear Stochastic Homogenization Using a Nonconcurrent Multiscale Approach for Hyperelastic Heterogenous Microstructure Analysis
,”
Int. J. Numer. Methods Eng.
,
91
(
8
), pp.
799
824
. 10.1002/nme.4293
20.
Clement
,
A.
,
Soize
,
C.
, and
Yvonnet
,
J.
,
2013
, “
Uncertainty Quantification in Computational Stochastic Multi-Scale Analysis of Nonlinear Elastic Materials
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
61
82
. 10.1016/j.cma.2012.10.016
21.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics I
,”
Phys. Rev.
,
106
(
4
), pp.
620
630
. 10.1103/PhysRev.106.620
22.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics II
,”
Phys. Rev.
,
108
(
2
), pp.
171
190
. 10.1103/PhysRev.108.171
23.
Zabaras
,
N.
,
Sundararaghavan
,
V.
, and
Sankaran
,
S.
,
2006
, “
An Information-Theoretic Approach for Obtaining Property PDFs From Macro Specifications of Microstructural Variability
,”
TMS Lett.
,
3
(
1
), p.
1
.
24.
Acar
,
P.
, and
Sundararaghavan
,
V.
,
2017
, “
Uncertainty Quantification of Microstructural Properties Due to Variability in Measured Pole Figures
,”
Acta Mater.
,
124
, pp.
100
108
. 10.1016/j.actamat.2016.10.070
25.
Acar
,
P.
, and
Sundararaghavan
,
V.
,
2017
, “
Uncertainty Quantification of Microstructural Properties Due to Experimental Variations
,”
AIAA J.
,
55
(
8
), pp.
2824
2832
. 10.2514/1.J055689
26.
Acar
,
P.
,
Srivastava
,
S.
, and
Sundararaghavan
,
V.
,
2017
, “
Stochastic Design Optimization of Microstructures with Utilization of a Linear Solver
,”
AIAA J.
,
55
(
9
), pp.
3161
3168
. 10.2514/1.J056000
27.
Acar
,
P.
,
2018
, “
Reliability Based Design Optimization of Microstructures With Analytical Formulation
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111402
. 10.1115/1.4040881
28.
Acar
,
P.
, and
Sundararaghavan
,
V.
,
2019
, “
Stochastic Design Optimization of Microstructural Features Using Linear Programming for Robust Material Design
,”
AIAA J.
,
57
(
1
), pp.
448
455
. 10.2514/1.J057377
29.
Acar
,
P.
, and
Sundararaghavan
,
V.
,
2016
, “
Utilization of a Linear Solver for Multiscale Design and Optimization of Microstructures
,”
AIAA J.
,
54
(
5
), pp.
1751
1759
. 10.2514/1.J054822
30.
Acar
,
P.
, and
Sundararaghavan
,
V.
,
2016
, “
Linear Solution Scheme for Microstructure Design With Process Constraints
,”
AIAA J.
,
54
(
12
), pp.
4022
4031
. 10.2514/1.J055247
31.
Acar
,
P.
,
Ramazani
,
A.
, and
Sundararaghavan
,
V.
,
2017
, “
Crystal Plasticity Modeling and Experimental Validation With An Orientation Distribution Function for Ti-7Al Alloy
,”
Metals
,
7
(
11
), p.
459
. 10.3390/met7110459
32.
Acar
,
P.
,
2018
, “
Crystal Plasticity Model Calibration for Ti-7Al Alloy With a Multi-Fidelity Computational Scheme
,”
Int. Mater. Manuf. Innovation
,
7
(
4
), pp.
186
194
. 10.1007/s40192-018-0120-0
33.
Sha
,
W.
, and
Malinov
,
S.
,
2009
,
Titanium Alloys: Modelling of Microstructure, Properties and Applications
,
Elsevier
,
Amsterdam, The Netherlands
.
You do not currently have access to this content.