Abstract

The present study intends to evaluate local ratcheting and stress relaxation of medium carbon steel samples under various asymmetric load levels by means of two kinematic hardening rules of Chaboche (CH) and Ahmadzadeh-Varvani (A-V). The Neuber's rule was coupled with the hardening rules to predict ratcheting and stress relaxation at the vicinity of the notch root. Stress-strain hysteresis loops generated by the CH and A-V models were employed to simultaneously control ratcheting progress over stress cycles and stress relaxation at notch root while strain range kept constant in each cycle. The higher cyclic load levels applied at the notch root accelerated shakedown over smaller number of cycles and resulted in lower relaxation rate. The larger notch diameter of 9 mm on the other hand induced lower stress concentration and smaller plastic zone at the notch root promoting ratcheting progress with less materials constraint over loading cycles compared with notch diameter d = 3 mm. Predicted ratcheting results through the A-V and CH models as coupled with the Neuber's rule were found in good agreements with the experimental data. The choice of the A-V and CH hardening rules in assessing ratcheting of materials was attributed to the number of terms/coefficients and complexity of their frameworks and computational time/central processing unit (CPU) required to run a ratcheting program.

References

1.
Varvani-Farahani
,
A.
, and
Nayebi
,
A.
,
2018
, “
Ratcheting in Pressurized Pipes and Equipment: A Review on Affecting Parameters, Modelling, Safety Codes, and Challenges
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
3
), pp.
503
538
. 10.1111/ffe.12775
2.
Morrow
,
J.
, and
Sinclair
,
G. M.
,
1959
, “Cycle-Dependent Stress Relaxation,”
Symposium on Basic Mechanisms of Fatigue
,
T. J.
Dolan
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
83
109
.
3.
Jhansale
,
H. R.
, and
Topper
,
T. H.
,
1973
, “Engineering Analysis of the Inelastic Stress Response of a Structural Metal Under Variable Cyclic Strains,”
Cyclic Stress-Strain Behavior, Analysis, Experimentation, and Failure Prediction
,
L.
Coffin
and
E.
Krempl
, eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
246
270
;
ASTM STP 519
.
4.
Paul
,
S. K.
,
Stanford
,
N.
,
Taylor
,
A.
, and
Hilditch
,
T.
,
2015
, “
The Effect of Low Cycle Fatigue, Ratcheting and Mean Stress Relaxation on Stress–Strain Response and Microstructural Development in a Dual Phase Steel
,”
Int. J. Fatigue
,
80
, pp.
341
348
. 10.1016/j.ijfatigue.2015.06.003
5.
Landgraf
,
R. W.
,
1970
, “The Resistance of Metals to Cyclic Deformation,”
Achievement of High Fatigue Resistance in Metals and Alloys
,
J.
Grosskreutz
and
C.
Feltner
, eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
3
36
;
ASTM STP 467
.
6.
Laamouri
,
A.
,
Sidhom
,
H.
, and
Traham
,
C.
,
2013
, “
Evaluation of Residual Stress Relaxation and its Effect on Fatigue Strength of AISI 316L Stainless Steel Ground Surfaces: Experimental and Numerical Approaches
,”
Int. J. Fatigue
,
48
, pp.
109
121
. 10.1016/j.ijfatigue.2012.10.008
7.
Wang
,
C. H.
, and
Rose
,
L. R. F.
,
1998
, “
Transient and Steady-State Deformation at Notch Root Under Cyclic Loading
,”
Mech. Mater.
,
30
(
3
), pp.
229
241
. 10.1016/S0167-6636(98)00048-9
8.
Lee
,
C. H.
,
Van Do
,
V. N.
, and
Chang
,
K. H.
,
2014
, “
Analysis of Uniaxial Ratcheting Behavior and Cyclic Mean Stress Relaxation of a Duplex Stainless Steel
,”
Int. J. Plast.
,
62
, pp.
17
33
. 10.1016/j.ijplas.2014.06.008
9.
Naghdi
,
P. M.
, and
Nikkel
,
D. J.
,
1984
, “
Calculations for Uniaxial Stress and Strain Cycling in Plasticity
,”
ASME J. Appl. Mech.
,
51
(
3
), pp.
487
493
. 10.1115/1.3167662
10.
Chiang
,
D. Y.
,
2008
, “
Modeling and Characterization of Cyclic Relaxation and Ratcheting Using the Distributed-Element Model
,”
Appl. Math. Model.
,
32
(
4
), pp.
501
513
. 10.1016/j.apm.2007.01.002
11.
Arcari
,
A.
, and
Dowling
,
N. E.
,
2012
, “
Modeling Mean Stress Relaxation in Variable Amplitude Loading for 7075-T6511 and 7249-T76511 High Strength Aluminum Alloys
,”
Int. J. Fatigue
,
42
, pp.
238
247
. 10.1016/j.ijfatigue.2011.10.016
12.
Kang
,
G. Z.
,
Zhang
,
J.
,
Sun
,
Y. F.
, and
Kan
,
Q. H.
,
2007
, “
Uniaxial Time-Dependent Ratcheting of SS304 Stainless Steel at High Temperatures
,”
J. Iron Steel Res. Int.
,
14
(
1
), pp.
53
59
. 10.1016/S1006-706X(07)60012-0
13.
Wetzel
,
R. M.
,
1968
, “
Smooth Specimen Simulation of the Fatigue Behavior of Notches
,”
J. Mater.
,
3
(
3
), pp.
646
657
.
14.
Stadnick
,
S. J.
and
Morrow
,
J.
,
1972
, “Techniques for Smooth Specimen Simulation of the Fatigue Behavior of Notched Members,”
Testing for Prediction of Material Performance in Structures and Components
,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
229
252
;
ASTM STP 515
.
15.
Valanis
,
K. C.
, and
Fan
,
J.
,
1983
, “
Endochronic Analysis of Cyclic Elastoplastic Strain Fields in a Notched Plate
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
789
794
. 10.1115/1.3167147
16.
Fan
,
J.
,
1999
, “
A Micro/Macroscopic Analysis for Cyclic Plasticity of Dual-Phase Materials
,”
ASME J. Appl. Mech.
,
66
(
1
), pp.
124
136
. 10.1115/1.2789139
17.
Hu
,
W.
,
Wang
,
C. H.
, and
Barter
,
S.
,
1999
, “
Analysis of Cyclic Mean Stress Relaxation and Strain Ratchetting Behavior of Aluminum 7050
,”
Aeronautical and Maritime Research Lab
,
Melbourne, Australia
,
Report No. DSTRO-RR-0153
.
18.
Rahman
,
S. M.
, and
Hassan
,
T.
,
2005
, “
Advanced Cyclic Plasticity Models in Simulating Ratcheting Responses of Straight and Elbow Piping Components, and Notched Plates
,”
ASME 2005 Pressure Vessels and Piping Conference
,
Denver, CO
,
July 17–21
, pp.
421
427
.
19.
Rice
,
A. R.
,
Morrison
,
M. L.
, and
Hassan
,
T.
,
2016
, “
Influence of Notch Geometry on the Notch Vicinity Stress and Strain Responses
,”
ASME 2016 Pressure Vessels and Piping Conference
,
Vancouver, BC, Canada
,
July 17–21
.
20.
Kolasangiani
,
K.
,
Farhangdoost
,
K.
,
Shariati
,
M.
, and
Varvani-Farahani
,
A.
,
2018
, “
Ratcheting Assessment of Notched Steel Samples Subjected to Asymmetric Loading Cycles Through Coupled Kinematic Hardening-Neuber Rules
,”
Int. J. Mech. Sci.
,
144
, pp.
24
32
. 10.1016/j.ijmecsci.2018.05.034
21.
Kolasangiani
,
K.
,
Farhangdoost
,
K.
,
Shariati
,
M.
, and
Varvani-Farahani
,
A.
,
2018
, “
Ratcheting Progress at Notch Root of 1045 Steel Samples Over Asymmetric Loading Cycles: Experiments and Analyses
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
9
), pp.
1870
1883
. 10.1111/ffe.12827
22.
Neuber
,
H.
,
1961
, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
544
550
. 10.1115/1.3641780
23.
Ahmadzadeh
,
G. R.
, and
Varvani-Farahani
,
A.
,
2013
, “
Ratcheting Assessment of Materials Based on the Modified Armstrong–Frederick Hardening Rule at Various Uniaxial Stress Levels
,”
Fatigue Fract. Eng. Mater. Struct.
,
36
(
12
), pp.
1232
1245
. 10.1111/ffe.12059
24.
Varvani-Farahani
,
A.
,
2017
, “
A Comparative Study in Descriptions of Coupled Kinematic Hardening Rules and Ratcheting Assessment Over Asymmetric Stress Cycles
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
(
6
), pp.
882
893
. 10.1111/ffe.12549
25.
Chaboche
,
J.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratcheting Effects
,”
Int. J. Plast.
,
7
(
7
), pp.
661
678
. 10.1016/0749-6419(91)90050-9
26.
Chaboche
,
J.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
. 10.1016/0749-6419(86)90010-0
27.
Khan
,
A. S.
, and
Huang
,
S.
,
1995
,
Continuum Theory of Plasticity
,
John Wiley and Sons
,
New York
.
28.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
Berkeley Nuclear Laboratories
,
Berkeley, Gloucestershire, UK
,
CEGB Report RD/B/N731
.
29.
Rezaiee-Pajand
,
M.
, and
Sinaie
,
S.
,
2009
, “
On the Calibration of the Chaboche Hardening Model and a Modified Hardening Rule for Uniaxial Ratcheting Prediction
,”
Int. J. Solids Struct.
,
46
(
16
), pp.
3009
3017
. 10.1016/j.ijsolstr.2009.04.002
30.
Ahmadzadeh
,
G. R.
, and
Varvani-Farahani
,
A.
,
2013
, “
Ratcheting Assessment of Steel Alloys Under Step-Loading Conditions
,”
Mater. Des.
,
51
, pp.
231
241
. 10.1016/j.matdes.2013.04.047
31.
Ahmadzadeh
,
G. R.
, and
Varvani-Farahani
,
A.
,
2016
, “
A Kinematic Hardening Rule to Investigate the Impact of Loading Path and Direction on Ratcheting Response of Steel Alloys
,”
Mech. Mater.
,
101
, pp.
40
49
. 10.1016/j.mechmat.2016.07.010
32.
Bower
,
A.
,
1989
, “
Cyclic Hardening Properties of Hard-Drawn Copper and Rail Steel
,”
J. Mech. Phys. Solids
,
37
(
4
), pp.
455
470
. 10.1016/0022-5096(89)90024-0
33.
Gaudin
,
C.
, and
Feaugas
,
X.
,
2004
, “
Cyclic Creep Process in AISI316L Stainless Steel in Terms of Dislocation Patterns and Internal Stresses
,”
Acta Materiallia
,
52
(
10
), pp.
3097
3110
. 10.1016/j.actamat.2004.03.011
34.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress-Strain Curves by Three Parameters
,”
National Advisory Committee for Aeronautics
,
Washington DC
,
NACA Technical Note No. 902
.
35.
MATLAB
,
2018
,
MATLAB 9.4
,
The MathWorks, Inc.
,
Natick, MA
.
36.
Shekarian
,
A.
, and
Varvani-Farahani
,
A.
,
2019
, “
Concurrent Ratcheting and Stress Relaxation at the Notch Root of Steel Samples Undergoing Asymmetric Tensile Loading Cycles
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
6
), pp.
1402
1413
. 10.1111/ffe.12996
You do not currently have access to this content.