This work presents a hyperviscoelastic model, based on the Hencky-logarithmic strain tensor, to model the response of a tire derived material (TDM) undergoing moderately large deformations. The TDM is a composite made by cold forging a mix of rubber fibers and grains, obtained by grinding scrap tires, and polyurethane binder. The mechanical properties are highly influenced by the presence of voids associated with the granular composition and low tensile strength due to the weak connection at the grain–matrix interface. For these reasons, TDM use is restricted to applications involving a limited range of deformations. Experimental tests show that a central feature of the response is connected to highly nonlinear behavior of the material under volumetric deformation which conventional hyperelastic models fail in predicting. The strain energy function presented here is a variant of the exponentiated Hencky strain energy, which for moderate strains is as good as the quadratic Hencky model and in the large strain region improves several important features from a mathematical point of view. The proposed form of the exponentiated Hencky energy possesses a set of parameters uniquely determined in the infinitesimal strain regime and an orthogonal set of parameters to determine the nonlinear response. The hyperelastic model is additionally incorporated in a finite deformation viscoelasticity framework that accounts for the two main dissipation mechanisms in TDMs, one at the microscale level and one at the macroscale level. The new model is capable of predicting different deformation modes in a certain range of frequency and amplitude with a unique set of parameters with most of them having a clear physical meaning. This translates into an important advantage with respect to overcoming the difficulties related to finding a unique set of optimal material parameters as are usually encountered fitting the polynomial forms of strain energies. Moreover, by comparing the predictions from the proposed constitutive model with experimental data we conclude that the new constitutive model gives accurate prediction.

References

1.
Montella
,
G.
,
Calabrese
,
A.
, and
Serino
,
G.
,
2012
, “
Experimental and Numerical Investigations on Innovative Floating-Slab Track Including Recycled Rubber Elements
,”
25th International Conference on Noise and Vibration Engineering (ISMA), Leuven, Belgium, Sept. 17–19
, Vol.
5805
, pp.
2869
2880
.
2.
Arruda
,
E.
, and
Boyce
,
M.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
3.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
4.
Ogden
,
R.
,
1972
, “
Large Deformation Isotropic Elasticity-on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
,
326
(
1567
), pp.
565
584
.
5.
Montella
,
G.
,
Calabrese
,
A.
, and
Serino
,
G.
,
2014
, “
Mechanical Characterization of a Tire Derived Material: Experiments, Hyperelastic Modeling and Numerical Validation
,”
Constr. Build. Mater.
,
66
, pp.
336
347
.
6.
Ogden
,
R.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2004
, “
Fitting Hyperelastic Models to Experimental Data
,”
Comput. Mech.
,
34
(
6
), pp.
484
502
.
7.
Becker
,
G.
,
1893
, “
The Finite Elastic Stress-Strain Function
,”
Am. J. Sci.
,
46
, pp.
337
356
.
8.
Neff
,
P.
,
Münch
,
I.
, and
Martin
,
R.
,
2014
, “
Rediscovering G.F. Becker's Early Axiomatic Deduction of a Multiaxial Nonlinear Stress-Strain Relation Based on Logarithmic Strain
,”
Math. Mech. Solids
(epub ahead of print).
9.
Ludwik
,
P.
,
1909
,
Elemente der Technologischen Mechanik
,
Springer-Verlag
,
Berlin
.
10.
Hencky
,
H.
,
1928
, “
Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen
,”
Z. Tech. Phys.
,
9
(
6
), pp.
215
220
.
11.
Hencky
,
H.
,
1929
, “
Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern?
,”
Z. Phys.
,
55
(
3
), pp.
145
155
.
12.
Neff
,
P.
,
Eidel
,
B.
, and
Martin
,
R.
,
2014
, “
The Axiomatic Deduction of the Quadratic Hencky Strain Energy by Heinrich Hencky (a New Translation of Hencky's Original German Articles)
,” e-print
arXiv:1402.4027
.
13.
Anand
,
L.
,
1979
, “
On H. Hencky's Approximate Strain Energy Function for Moderate Deformations
,”
ASME J. Appl. Mech.
,
46
(
1
), pp.
78
82
.
14.
Hsu
,
T.
,
Davies
,
S.
, and
Royles
,
R.
,
1967
, “
A Study of the Stress-Strain Relationship in the Work-Hardening Range
,”
ASME J. Basic Eng.
,
89
(
3
), pp.
453
457
.
15.
Sharda
,
S.
,
1974
, “
I. A New Elastic Potential Function for Rubbers. II. Thermoelastic Behavior of Rubbers
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
16.
Neff
,
P.
,
Ghiba
,
I.
, and
Lankeit
,
J.
,
2015
, “
The Exponentiated Hencky-Logarithmic Strain Energy—Part I: Constitutive Issues and Rank–One Convexity
,”
J. Elasticity
,
121
(
2
), pp.
143
234
.
17.
Neff
,
P.
,
Ghiba
,
I.
,
Lankeit
,
J.
,
Martin
,
R.
, and
Steigmann
,
D.
,
2015
, “
The Exponentiated Hencky-Logarithmic Strain Energy—Part II: Coercivity, Planar Polyconvexity and Existence of Minimizers
,”
Z. Angew. Math. Phys.
,
66
(
4
), pp.
1671
1693
.
18.
Neff
,
P.
, and
Ghiba
,
I.
,
2016
, “
The Exponentiated Hencky-Logarithmic Strain Energy. Part III: Coupling With Idealized Isotropic Finite Strain Plasticity
,”
Continuum Mech. Thermodyn.
,
28
(
1
), pp.
477
487
.
19.
Neff
,
P.
, and
Ghiba
,
I.
,
2016
, “
Loss of Ellipticity for Non-Coaxial Plastic Deformations in Additive Logarithmic Finite Strain Plasticity
,”
Int. J. Non-Linear Mech.
,
81
, pp.
122
128
.
20.
Neff
,
P.
,
Eidel
,
B.
,
Osterbrink
,
F.
, and
Martin
,
R.
,
2014
, “
A Riemannian Approach to Strain Measures in Nonlinear Elasticity
,”
C. R. Méc.
,
342
(
4
), pp.
254
257
.
21.
Neff
,
P.
,
Eidel
,
B.
, and
Martin
,
R.
,
2016
, “
Geometry of Logarithmic Strain Measures in Solid Mechanics
,”
Arch. Ration. Mech. Anal.
(submitted).
22.
Neff
,
P.
,
Nakatsukasa
,
Y.
, and
Fischle
,
A.
,
2014
, “
A Logarithmic Minimization Property of the Unitary Polar Factor in the Spectral Norm and the Frobenius Matrix Norm
,”
SIAM J. Matrix Anal. Appl.
,
35
(
3
), pp.
1132
1154
.
23.
Bîrsan
,
M.
,
Neff
,
P.
, and
Lankeit
,
J.
,
2013
, “
Sum of Squared Logarithms: An Inequality Relating Positive Definite Matrices and Their Matrix Logarithm
,”
J. Inequalities Appl.
,
2013
(
1
), p.
168
.
24.
Lankeit
,
J.
,
Neff
,
P.
, and
Nakatsukasa
,
Y.
,
2014
, “
The Minimization of Matrix Logarithms: On a Fundamental Property of the Unitary Polar Factor
,”
Linear Algebra Its Appl.
,
449
, pp.
28
42
.
25.
Borisov
,
L.
,
Neff
,
P.
,
Sra
,
S.
, and
Thiel
,
C.
,
2016
, “
The Sum of Squared Logarithms Inequality in Arbitrary Dimensions
,”
Linear Algebra Its Appl.
(submitted).
26.
Martin
,
R.
,
Ghiba
,
I.
, and
Neff
,
P.
,
2016
, “
Rank-One Convexity Implies Polyconvexity for Isotropic, Objective and Isochoric Elastic Energies in the Two-Dimensional Case
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
(submitted).
27.
Ghiba
,
I.
,
Neff
,
P.
, and
Šilhavý
,
M.
,
2015
, “
The Exponentiated Hencky-Logarithmic Strain Energy. Improvement of Planar Polyconvexity
,”
Int. J. Non-Linear Mech.
,
71
, pp.
48
51
.
28.
Ghiba
,
I.
,
Neff
,
P.
, and
Martin
,
R.
,
2015
, “
An Ellipticity Domain for the Distortional Hencky-Logarithmic Strain Energy
,”
Proc. R. Soc. A
,
471
(
2184
), p.
20150510
.
29.
Treloar
,
L.
,
1944
, “
Stress-Strain Data for Vulcanised Rubber Under Various Types of Deformation
,”
Trans. Faraday Soc.
,
40
, pp.
59
70
.
30.
Jones
,
D.
, and
Treloar
,
L.
,
1975
, “
The Properties of Rubber in Pure Homogeneous Strain
,”
J. Phys. D: Appl. Phys.
,
8
(
11
), pp.
1285
1304
.
31.
MathWorks
,
2014
, “
Image Processing Toolbox Users Guide
,” MATLAB 2014b,
The MathWorks Inc.
,
Natick, MA
.
32.
Kakavas
,
P.
,
2000
, “
Prediction of the Nonlinear Poisson Function Using Large Volumetric Strains Estimated From a Finite Hyperelastic Material Law
,”
Polym. Eng. Sci.
,
40
(
6
), pp.
1330
1333
.
33.
Smith
,
C.
,
Wootton
,
R.
, and
Evans
,
K.
,
1999
, “
Interpretation of Experimental Data for Poisson's Ratio of Highly Nonlinear Materials
,”
Exp. Mech.
,
39
(
4
), pp.
356
362
.
34.
Helfenstein
,
J.
,
Jabareen
,
M.
,
Mazza
,
E.
, and
Govindjee
,
S.
,
2010
, “
On Non-Physical Response in Models for Fiber-Reinforced Hyperelastic Materials
,”
Int. J. Solids Struct.
,
47
(
16
), pp.
2056
2061
.
35.
Vallée
,
C.
,
1978
, “
Lois de comportement élastique isotropes en grandes déformations
,”
Int. J. Eng. Sci.
,
16
(
7
), pp.
451
457
.
36.
Björck
,
A.
,
1996
,
Numerical Methods for Least Squares Problems
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
37.
Aster
,
R.
,
Borchers
,
B.
, and
Thurber
,
C.
,
2013
,
Parameter Estimation and Inverse Problems
,
Academic Press
,
Waltham, MA
.
38.
MathWorks
,
2014
, “
Optimization Toolbox Users Guide
,” MATLAB 2014b,
The MathWorks Inc.
,
Natick, MA
.
39.
Bueche
,
F.
,
1960
, “
Molecular Basis for the Mullins Effect
,”
J. Appl. Polym. Sci.
,
4
(
10
), pp.
107
114
.
40.
Bueche
,
F.
,
1961
, “
Mullins Effect and Rubber-Filler Interaction
,”
J. Appl. Polym. Sci.
,
5
(
15
), pp.
271
281
.
41.
Rigbi
,
Z.
,
1980
, “
Reinforcement of Rubber by Carbon Black
,”
Adv. Polym. Sci.
,
36
, pp.
21
68
.
42.
Payne
,
A.
,
1962
, “
The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates—Part I
,”
J. Appl. Polym. Sci.
,
6
(
19
), pp.
57
53
.
43.
Sidoroff
,
F.
,
1974
, “
Un modèle viscoèlastique non linèaire avec configuration intermèdiaire
,”
J. Mèc.
,
13
(
4
), pp.
679
713
.
44.
Oda
,
M.
,
Konishi
,
J.
, and
Nemat-Nasser
,
S.
,
1982
, “
Experimental Micromechanical Evaluation of Strength of Granular Materials: Effects of Particle Rolling
,”
Mech. Mater.
,
1
(
4
), pp.
269
283
.
45.
Jiang
,
M.
,
Yu
,
H.-S.
, and
Harris
,
D.
,
2005
, “
A Novel Discrete Model for Granular Material Incorporating Rolling Resistance
,”
Comput. Geotech.
,
32
(
5
), pp.
340
357
.
46.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
,
35
(
26–27
), pp.
3455
3482
.
47.
Govindjee
,
S.
, and
Reese
,
S.
,
1997
, “
A Presentation and Comparison of Two Large Deformation Viscoelasticity Models
,”
ASME J. Eng. Mater. Technol.
,
119
(
3
), pp.
251
255
.
You do not currently have access to this content.