The paper is concerned with occurrence of processing defects and resulting mechanical properties associated with material processing by metal injection molding (MIM). MIM process is a multistep one that consists first in the injection of metallic powders mixed with a thermoplastic binder, followed by a debinding stage that permits to evacuate the polymeric binder, and then followed by a sintering stage by solid state diffusion that normally leads to a nearly dense component. The main defects arising during MIM processing are associated with powder segregation during injection molding, and uncompleted or heterogeneous mechanical properties resulting from solid state diffusion. The paper first describes a biphasic fluid flow approach that can accurately predict powder volume fraction after injection molding and consequently the associated segregation defects. This analysis is followed and continued by a proper sintering model based on an elastic-viscous analogy that predicts the resulting local densities after sintering and also associated defects. So, from the two subsequent models, it becomes possible to get the final powder densities after processing and to localize the possible resulting defects. This analysis is completed by an analysis using a porous material model to get the final resultant mechanical properties after processing.

1.
German
,
R. M.
, and
Bose
,
A.
, 1997,
Injection Molding of Metals and Ceramics
,
MPIF
,
Princeton, NJ
, pp.
1
100
.
2.
Fox
,
R. T.
, and
Lee
,
D.
, 1994, “
Analysis of Temperature Effects During Cooling in Powder Injection Molding
,”
Int. J. Powder Metall.
0020-7535,
30
(
1
), pp.
221
229
.
3.
German
,
R. M.
, 1996,
Sintering Theory and Practice
,
Wiley
,
New York
, pp.
1
120
.
4.
Dutilly
,
M.
,
Ghouati
,
O.
, and
Gelin
,
J. C.
, 1998, “
Finite Element Analysis of the Debinding and Densification Phenomena in the Process of Metal Injection Molding
,”
J. Mater. Process. Technol.
0924-0136,
83
, pp.
170
175
.
5.
Gelin
,
J. C.
,
Barriere
,
T.
, and
Dutilly
,
M.
, 1999, “
Experiments and Computational Modeling of Metal Injection Molding for Forming Small Parts
,”
CIRP Ann.
0007-8506,
48
(
1
), pp.
179
182
.
6.
Barriere
,
T.
,
Gelin
,
J. C.
, and
Liu
,
B.
, 2001, “
Experimental and Numerical Investigations on the Properties and Quality of Parts Produced by Mim
,”
Powder Metall.
0032-5899,
44
(
3
), pp.
228
234
.
7.
Barriere
,
T.
,
Gelin
,
J. C.
, and
Liu
,
B.
, 2002, “
Improving Mould Design and Injection Parameters in Metal Injection Moulding by Accurate 3D Finite Element Simulation
,”
J. Mater. Process. Technol.
0924-0136,
125–126
, pp.
518
524
.
8.
Olevsky
,
E. A.
, 1998, “
Theory of Sintering: From Discrete to Continuum
,”
Mater. Sci. Eng., R.
0927-796X,
38
, pp.
41
100
.
9.
German
,
R. M.
, 2002, “
Computer Modeling of Sintering Processes
,”
Int. J. Powder Metall.
0020-7535,
38
(
2
), pp.
48
66
.
10.
Kraft
,
T.
, and
Riedel
,
H.
, 2004, “
Numerical Simulation of Solid State Sintering: Model and Application
,”
J. Eur. Ceram. Soc.
0955-2219,
24
, pp.
345
361
.
11.
Song
,
J.
,
Gelin
,
J. C.
,
Barriere
,
T.
, and
Liu
,
B.
, 2006, “
Experiments and Numerical Modelling of Solid State Sintering for 316L Stainless Steel Components
,”
J. Mater. Process. Technol.
0924-0136,
177
, pp.
352
355
.
12.
Song
,
J.
,
Barriere
,
T.
,
Liu
,
B.
, and
Gelin
,
J. C.
, 2007, “
Numerical Predictions on the Final Properties of Metal Injection Moulded Components After Sintering Process
,”
Proceedings of ESAFORM 2007 Conference
,
American Institute of Physics
,
Zaragoza, Spain
, Vol.
907
, pp.
39
46
.
13.
Piccirillo
,
N.
, and
Lee
,
D.
, 1992, “
Jetting Phenomenon in Powder Injection Molding
,”
Int. J. Powder Metall.
0020-7535,
28
, pp.
13
25
.
14.
Dvorak
,
P.
,
Barriere
,
T.
, and
Gelin
,
J. C.
, 2005, “
Jetting in Metal Injection Molding of 316L Stainless Steel
,”
Powder Metall.
0032-5899,
48
(
3
), pp.
254
260
.
15.
Kulkarni
,
K. M.
, in
Factors Affecting Dimensional Precision of MIM Parts Under Production Conditions
,
Advanced Powder Metallurgy and Particulate Materials
, 1996, edited by
T.
Cadle
and
K. S.
Narasimhan
(
Metal Powder Industries Federation
), Vol.
5
, pp.
157
170
.
16.
Liksonov
,
D.
,
Barriere
,
T.
,
Boudeau
,
N.
,
Gelin
,
J. C.
, and
Maslov
,
L.
, 2004, “
Powder Injection Molding of Femoral Implant Stems
,”
Proceedings of World Euro PM
, 2004,
EPMA
,
Vienne
, Vol.
5
, pp.
599
603
.
17.
Gelin
,
J. C.
,
Barriere
,
T.
, and
Liu
,
B.
, 2002, “
Improved Mould Design in Metal Injection Moulding by Combination of Numerical Simulations and Experiments
,”
Proceedings of the Institution of Mechanical Engineers
, Part B,
J. Eng. Manufacture
,
126
(12), pp.
1533
1547
.
18.
Liu
,
B.
,
Barriere
,
T.
, and
Gelin
,
J. C.
, 2003, “
Bi-Phasic Simulation of Metal Injection Molding: Constitutive Determinations
,”
J. Southwest Jiaotong University (English version)
,
11
(
2
), pp.
122
130
.
19.
Gresho
,
P. M.
,
Chan
,
S. T.
,
Lee
,
R. L.
, and
Upson
,
C. D.
, 1984, “
A Modified Finite Element Method for Solving the Time Dependent, Incompressible Navier-Stokes Equations, Part 1 and Part 2
,”
Int. J. Numer. Methods Fluids
0271-2091,
4
, pp.
557
598
.
20.
Lewis
,
R. W.
,
Huang
,
H. C.
,
Usmani
,
A. S.
, and
Cross
,
J. T.
, 1991, “
Finite Element Analysis of Heat Transfer and Flows Problems Using Adaptive Remeshing Including Application to Solidifications Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
767
781
.
21.
Lewis
,
R. W.
,
Usmani
,
A. S.
, and
Cross
,
J. T.
, 1995, “
Efficient Mould Filling Simulation in Castings by an Explicit Finite Element Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
20
, pp.
493
506
.
22.
Bordia
,
R. K.
, and
Scherer
,
G. W.
, 1988, “
On Constrained Sintering-I Constitutive Model for a Sintering Body
,”
Acta Metall.
0001-6160,
36
(
9
), pp.
2393
2397
.
23.
Zhang
,
R.
, 2005, “
Numerical Simulation of Solid-State Sintering of Metal Powder Compact Dominated by Grain Boundary Diffusion
,” Ph.D. thesis, Pennsylvania State University, State College, PA.
24.
Suri
,
P.
,
Koseski
,
R. P.
, and
German
,
R. M.
, 2005, “
Microstructural Evolution of Injection Molded Gas- and Water-Atomized 316L Stainless Steel Powder During Sintering
,”
Mater. Sci. Eng., A
0921-5093,
402
, pp.
341
348
.
25.
Song
,
J.
,
Barriere
,
T.
,
Gelin
,
J. C.
, and
Liu
,
B.
, 2007, “
Numerical Simulation of Sintering Process in Ceramic Powder Injection Moulded Components
,”
Proceedings of Ninth International Conference in Numerical Methods in Industrial Forming Processes
,
American Institute of Physics
,
Porto, Portugal
, pp.
1111
1116
.
26.
Suri
,
P.
,
Heaney
,
D. F.
, and
German
,
R. M.
, 2003, “
Defect-Free Sintering of Two Material Powder Injection Molded Components: Part II, Model
,”
J. Mater. Sci.
0022-2461,
38
, pp.
4875
4881
.
27.
Olevsky
,
E. A.
,
Shoales
,
G. A.
, and
German
,
R. M.
, 2001, “
Temperature Effects on Strength Evolution Under Sintering
,”
Mater. Res. Bull.
0025-5408,
36
, pp.
449
459
.
28.
Ohani
,
T.
,
Ogi
,
H.
, and
Hirao
,
M.
, 2004, “
Change of Ultrasonic Attenuation and Microstructure Evolution During Creep of a Stainless Steel
,”
Proceedings of the 16th World Conference on Non Destructive Testing
,
Montréal, Canada
, pp.
1
5
.
29.
Schaff
,
W.
, and
Wieter
,
K. P.
, 1997, “
Powder Metallurgy: Processing and Materials
,”
EPMA
,
Shrewsbury, UK
, pp.
177
207
.
You do not currently have access to this content.