A multiple-slip dislocation-density-based crystalline formulation, specialized finite-element formulations, and Voronoi tessellations adapted to martensitic orientations were used to investigate dislocation-density activities and crack tip blunting in high strength martensitic steels. The formulation is based on accounting for variant morphologies and orientations, retained austenite, and initial dislocations densities that are uniquely inherent to martensitic microstructures. The effects of variant distributions and arrangements are investigated for different crack and void interaction distributions and arrangements. The analysis indicates that for certain orientations related to specific variant block arrangements, which correspond to random low angle orientations, cracks can be blunted by dislocation-density activities along transgranular planes. For other variant block arrangements, which correspond to random high angle orientations, sharp crack growth can occur due to dislocation activities along intergranular planes.

1.
Otsuka
,
K.
, and
Wayman
,
C. M.
, 1999,
Shape Memory Alloys
,
Cambridge University
,
Cambridge, England
.
2.
Krauss
,
G.
, 2001, “
Deformation and Fracture in Martensitic Carbon Steels Tempered at Low Temperature
,”
Metall. Mater. Trans. A
1073-5623,
32B
, pp.
205
221
.
3.
Saeglitz
,
M.
, and
Krauss
,
G.
, 1997, “
Deformation, Fracture, and Mechanical Properties of Low-Temperature-Tempered Martensite in SAE 43xx Steels
,”
Metall. Mater. Trans. A
1073-5623,
28
, pp.
377
387
.
4.
Morito
,
S.
,
Yoshida
,
H.
,
Maki
,
T.
, and
Huang
,
X.
, 2006, “
Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels
,”
Mater. Sci. Eng., A
0921-5093,
438–440
, pp.
237
240
.
5.
Thomas
,
G.
, 1978, “
Retained Austenite and Tempered Martensite Embrittlement
,”
Metall. Trans. A
0360-2133,
9
, pp.
439
450
.
6.
Nakagawa
,
H.
, and
Miyazaki
,
T.
, 1999, “
Effect of Retained Austenite on the Microstructure and Mechanical Properties of Martensitic Precipitation Hardening Stainless Steel
,”
J. Mater. Sci.
0022-2461,
34
, pp.
3901
3908
.
7.
Wakasa
,
K.
, and
Wayman
,
C. M.
, 1981, “
The Morphology and Crystallography of Ferrous Lath Martensite. Studies of Fe-20%Ni-5%Mn—I. Optical Microscopy
,”
Acta Metall.
0001-6160,
29
, pp.
973
990
.
8.
Wakasa
,
K.
, and
Wayman
,
C. M.
, 1981, “
The Morphology and Crystallography of Ferrous Lath Martensite. Studies of Fe-20%Ni-5%Mn—II. Transmission Electron Microscopy
,”
Acta Metall.
0001-6160,
29
, pp.
991
1011
.
9.
Wakasa
,
K.
, and
Wayman
,
C. M.
, 1981, “
The Morphology and Crystallography of Ferrous Lath Martensite. Studies of Fe-20%Ni-5%Mn—III. Surface Relief, The Shape Strain and Related Features
,”
Acta Metall.
0001-6160,
29
, pp.
1013
1028
.
10.
Wakasa
,
K.
, and
Wayman
,
C. M.
, 1981, “
Crystallography and Morphology of Ferrous Lath Martensite
,”
Metallography
0026-0800,
14
, pp.
49
60
.
11.
Sandvik
,
B. P. J.
, and
Wayman
,
C. M.
, 1983, “
Characteristics of Lath Martensite—Part I: Crystallographic and Substructural Features
,”
Metall. Trans. A
0360-2133,
14
, pp.
809
822
.
12.
Sandvik
,
B. P. J.
, and
Wayman
,
C. M.
, 1983, “
Characteristics of Lath Martensite—II
,”
Metall. Trans. A
0360-2133,
14
, pp.
823
834
.
13.
Sandvik
,
B. P. J.
, and
Wayman
,
C. M.
, 1983, “
Characteristics of Lath Martensite—III
,”
Metall. Trans. A
0360-2133,
14
, pp.
835
844
.
14.
Morito
,
S.
,
Huang
,
X.
,
Furuhara
,
T.
,
Maki
,
T.
, and
Hansen
,
N.
, 2006, “
The Morphology and Crystallography of Lath Martensite in Alloys Steels
,”
Acta Mater.
1359-6454,
54
, pp.
5323
5331
.
15.
Morito
S.
,
Tanaka
H.
,
Konishi
,
R.
,
Furuhara
,
T.
, and
Maki
,
T.
, 2003, “
The Morphology and Crystallography of Lath Martensite in Fe-C Alloys
,”
Acta Mater.
1359-6454,
51
, pp.
1789
1799
.
16.
Morito
,
S.
,
Kishida
,
I.
, and
Maki
,
T.
, 2003, “
Microstructure of Ausformed Lath Martensite in 18%Ni Maraging Steel
,”
J. Phys. IV
1155-4339,
112
, pp.
453
456
.
17.
Morito
,
S.
,
Nishikawa
,
J.
, and
Maki
,
T.
, 2003, “
Dislocation Density Within Lath Martensite in Fe-C and Fe-Ni Alloys
,”
ISIJ Int.
0915-1559,
43
(
9
), pp.
1475
1477
.
18.
Morito
,
S.
,
Saito
,
H.
,
Ogawa
,
T.
,
Furuhara
,
T.
, and
Maki
,
T.
, 2005, “
Effect of Austenite Grain Size on the Morphology and Crystallography of Lath Martensite in Low Carbon Steels
,”
ISIJ Int.
0915-1559,
45
(
1
), pp.
91
94
.
19.
Kelly
,
P. M.
, 1992, “
Crystallography of Lath Martensite in Steels
,”
Mater. Trans., JIM
0916-1821,
33
(
3
), pp.
235
242
.
20.
Rowenhorst
,
D. J.
,
Gupta
,
A.
,
Feng
,
C. R.
, and
Spanos
,
G.
, 2006, “
3D Crystallography and Morphological Analysis of Coarse Martensite: Combining EBSD and Serial Sectioning
,”
Scr. Mater.
1359-6462,
55
, pp.
11
16
.
21.
Garrison
,
W. M.
, Jr.
, and
Moody
,
N. R.
, 1987, “
Ductile Fracture
,”
J. Phys. Chem. Solids
0022-3697,
48
(
11
), pp.
1035
1074
.
22.
Lorio
,
L. E.
, and
Garrison
,
W. M.
, Jr.
, 2002, “
Effects of Gettering Sulfur as CrS or MnS on Void Generation Behavior in Ultra-High Strength Steel
,”
Scr. Mater.
1359-6462,
46
(
12
), pp.
863
868
.
23.
Garrison
,
W. M.
, Jr.
, and
Wojcieszynski
,
A. L.
, 2007, “
A Discussion of the Effect of Inclusion Volume Fraction on the Toughness of Steel
,”
Mater. Sci. Eng., A
0921-5093,
464
, pp.
321
329
.
24.
Minnaar
K.
, and
Zhou
M.
, 1998, “
An Analysis of the Dynamic Shear Failure Resistance of Structural Metal
,”
J. Mech. Phys. Solids
0022-5096,
46
(
10
), pp.
2155
2170
.
25.
McVeigh
C.
,
Vernerey
,
F.
,
Liu
W.-C.
,
Moran
B.
, and
Olson
G.
, 2007, “
An Interactive Micro-Void Shear Localization Mechanism in High Strength Steels
,”
J. Mech. Phys. Solids
0022-5096,
55
, pp.
225
244
.
26.
Zhai
,
J.
,
Tomar
,
V.
, and
Zhou
M.
, 2004, “
Micromechanical Simulation of Dynamic Fracture Using Cohesive Finite Element Method
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
179
191
.
27.
Bandstra
,
J. P.
,
Koss
,
D. A.
,
Geltmacher
,
A.
,
Matic
,
P.
, and
Everett
,
R. K.
, 2006, “
Modeling Void Coalescence During Ductile Fracture of a Steel
,”
Mater. Sci. Eng., A
0921-5093,
366
(
2
), pp.
269
281
.
28.
Grujicic
,
M.
, and
Dang
,
P.
, 1995, “
Computer Simulation of Martensitic Simulation of Martensitic Transformation in Fe-Ni Face-Centered Cubic Alloys
,”
Mater. Sci. Eng., A
0921-5093,
201
, pp.
194
204
.
29.
Suzuki
,
T.
,
Shimono
,
M.
,
Ren
,
X.
,
Otsuka
,
K.
, and
Onodera
,
H.
, 2006, “
Study of Martensitic Transformation by Use of Monte-Carlo Method and Molecular Dynamics
,”
Mater. Sci. Eng., A
0921-5093,
438–440
, pp.
95
98
.
30.
Marian
,
J.
,
Wirth
,
B. D.
,
Schäublin
,
R.
,
Odette
,
G. R.
, and
Perlado
,
J. M.
, 2003, “
MD Modeling of Defects in Fe and Their Interactions
,”
J. Nucl. Mater.
0022-3115,
323
, pp.
181
191
.
31.
Zikry
,
M. A.
, and
Kao
,
M.
, 1996, “
Inelastic Microstructural Failure Mechanisms in Crystalline Materials With High Angle Grain Boundaries
,”
J. Mech. Phys. Solids
0022-5096,
44
(
11
), pp.
1765
1798
.
32.
Ashmawi
,
W. M.
, and
Zikry
,
M. A.
, 2000, “
Effects of Grain Boundaries and Dislocation Density Evolution on Large Strain Deformation Modes in FCC Crystalline Materials
,”
J. Comput.-Aided Mater. Des.
0928-1045,
7
, pp.
55
62
.
33.
Hatem
,
T. M.
, and
Zikry
,
M. A.
, 2009, “
Dislocation-Density Crystalline Plasticity Modelling of Lath Martensitic Microstructures in Steel Alloys
,”
Philos. Mag. A
0141-8610, in press.
34.
Hwang
,
F. K.
, 1979, “
An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees
,”
J. ACM
1535-9921,
26
(
2
), pp.
177
182
.
35.
Lee
,
D. T.
, 1980, “
Two Dimensional Voronoi Diagram in the Lp-Metric
,”
J. ACM
1535-9921,
27
(
4
), pp.
604
618
.
36.
Mughrabi
,
H.
, 1987, “
A 2-Parameter Description of Heterogeneous Dislocation Distributions in Deformed Metal Crystals
,”
Mater. Sci. Eng.
0025-5416,
85
(
1–2
), pp.
15
31
.
37.
Mecking
,
H.
, and
Kocks
,
U. F.
, 1981, “
Kinetics of Flow and Strain-Hardening
,”
Acta Metall.
0001-6160,
29
(
11
), pp.
1865
1875
.
38.
Liu
,
Q.
,
Jensen
,
D. J.
, and
Hansen
,
N.
, 1998, “
Effect of Grain Orientation on Deformation Structure in Cold-Rolled Polycrystalline Aluminum
,”
Acta Mater.
1359-6454,
46
(
16
), pp.
5819
5838
.
39.
Kameda
,
T.
, and
Zikry
,
M. A.
, 1996, “
Three Dimensional Dislocation-Based Crystalline Constitutive Formulation for Ordered Intermetallics
,”
Scr. Mater.
1359-6462,
38
(
4
), pp.
631
636
.
40.
Bay
,
B.
,
Hansen
,
N.
,
Hughes
,
D. A.
, and
Kuhlmann-Wilsdorf
,
D.
, 1992, “
Evolution of F.C.C. Deformation Structures in Polyslip
,”
Acta Metall. Mater.
0956-7151,
40
, pp.
205
219
.
41.
Hansen
,
N.
, 1990, “
Cold Deformation Microstructures
,”
Mater. Sci. Technol.
0267-0836,
6
, pp.
1039
1047
.
42.
Taylor
,
G. I.
, 1934, “
The Mechanism of Plastic Deformation of Crystals—Part I: Theoretical
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
145
, pp.
362
387
. 0080-4630
43.
Taylor
,
G. I.
, 1934, “
The Mechanism of Plastic Deformation of Crystals—Part II: Comparison With Observations
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
145
, pp.
388
404
. 0080-4630
44.
Franciosi
,
P.
, and
Zaoui
,
A.
, 1982, “
Multislip in F.C.C. Crystals: A Theoretical Approach Compared With Experimental Data
,”
Acta Metall.
0001-6160,
30
, pp.
1627
1637
.
45.
Franciosi
,
P.
, 1983, “
Glide Mechanisms in B.C.C. Crystals: An Investigation of the Case of Alfa Iron Through Multislip and Latent Hardening Test
,”
Acta Metall.
0001-6160,
31
(
9
), pp.
1331
1342
.
46.
Stainier
,
L.
,
Cuitino
,
A. M.
, and
Ortiz
,
M.
, 2002, “
A Micromechanical Model of Hardening, Rate Sensitivity and Thermal Softening in B.C.C Single Crystal
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
1511
1545
.
47.
Bhadeshia
,
H. K. D. H.
, 2001,
Worked Examples in the Geometry of Crystals
,
Institute of Metals
,
London
.
48.
McMahon
,
J. A.
, and
Thomas
,
G.
, 1973,
Proceedings of the Third International Conference on the Strength of Metals and Alloys
, Institution of Metals, London, pp.
180
184
.
49.
Zikry
,
M. A.
, 1994, “
An Accurate and Stable Algorithm for High Strain-Rate Finite Strain Plasticity
,”
Comput. Struct.
0045-7949,
50
, pp.
337
350
.
50.
Rice
,
J. R.
, 1992, “
Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
0022-5096,
40
(
2
), pp.
239
271
.
51.
Kameda
,
T.
, and
Zikry
,
M. A.
, 1998, “
Intergranular and Transgranular Crack Growth at Triple Junction Boundaries in Ordered Intermetallics
,”
Int. J. Plast.
0749-6419,
14
(
8
), pp.
689
702
.
52.
Kameda
,
T.
,
Zikry
,
M. A.
, and
Rajendran
,
A. M.
, 2006, “
Modeling of Grain-Boundary Effects and Intergranular and Transgranular Failure in Polycrystalline Intermetallics
,”
Metall. Mater. Trans. A
1073-5623,
37
, pp.
2107
2115
.
53.
Qiao
,
Y.
, and
Argon
,
A. S.
, 2003, “
Cleavage Cracking Resistance of High Angle Grain Boundaries in Fe–3%Si Alloy
,”
Mech. Mater.
0167-6636,
35
, pp.
313
331
.
54.
Kong
X.
, and
Qiao
Y.
, 2005, “
Crack Trapping Effect of Persistent Grain Boundary Islands
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
28
, pp.
753
758
.
You do not currently have access to this content.