In this study, a multiscale material model is employed to simulate two metal forming processes: 2D plane strain compression and a 3D biaxial bulge test. A generalized Taylor-type polycrystal model is employed to describe the fine scale viscoplastic response of the material, while the coarse scale response is computed using a multiphysics finite element code. The coupling between the local responses of the textured polycrystal and the continuum level is achieved via an adaptive sampling framework, which is shown to greatly reduce the total number of fine scale evaluations required to achieve a specified error tolerance. The anisotropy represented at the fine scale is sufficient to observe strain localization in both forming processes. For the case of idealized plane strain compression, a fairly diffuse yet distinct patterning of plastic strain localization develops in a manner consistent with experimental observations. The application of friction constraints to the compression surfaces—as is present in channel die compression tests—dramatically strengthens and redistributes the localization patterns. The simulated biaxial bulge test also demonstrates strain localization that is in agreement with the locations of diffuse necks in experimental observations. The tests are conducted using a federated multiple-program multiple-data simulation, which allows for load balancing between the coarse and fine scale calculations. Such a simulation framework is capable of efficiently embedding physically robust, but computationally expensive material models in component scale simulations appropriate to design decisions.

1.
Dawson
,
P. R.
,
MacEwen
,
S. R.
, and
Wu
,
P.-D.
, 2003, “
Advances in Sheet Metal Forming Analyses: Dealing With Mechanical Anisotropy From Crystallographic Texture
,”
Int. Mater. Rev.
0950-6608,
48
(
2
), pp.
86
122
.
2.
Kuroda
,
M.
, and
Tvergaard
,
V.
, 2007, “
Effects of Texture on Shear Band Formation in Plane Strain Tension/Compression and Bending
,”
Int. J. Plast.
0749-6419,
23
(
2
), pp.
244
272
.
3.
Dawson
,
P. R.
,
Miller
,
M. P.
,
Han
,
T. S.
, and
Bernier
,
J. V.
, 2005, “
An Accelerated Methodology for the Evaluation of Critical Properties in Polyphase Alloys
,”
Metall. Mater. Trans. A
1073-5623,
36A
, pp.
1627
1641
.
4.
Han
,
T.-S.
, and
Dawson
,
P. R.
, 2007, “
A Two-Scale Deformation Model for Polycrystalline Solids Using a Strongly-Coupled Finite Element Methodology
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
196
, pp.
2029
2043
.
5.
Arsenlis
,
A.
,
Barton
,
N. R.
,
Becker
,
R.
, and
Rudd
,
R. E.
, 2006, “
Generalized in Situ Adaptive Tabulation for Constitutive Model Evaluation in Plasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
196
, pp.
1
13
.
6.
Barton
,
N. R.
,
Knap
,
J.
,
Arsenlis
,
A.
,
Becker
,
R.
,
Hornung
,
R. D.
, and
Jefferson
,
D. R.
, 2008, “
Embedded Polycrystal Plasticity and Adaptive Sampling
,”
Int. J. Plast.
0749-6419,
24
, pp.
242
266
.
7.
Knap
,
J.
,
Barton
,
N. R.
,
Hornung
,
R. D.
,
Arsenlis
,
A.
,
Becker
,
R.
, and
Jefferson
,
D. R.
, 2007, “
Adaptive Sampling in Hierarchical Simulation
,”
Int. J. Numer. Methods Eng.
0029-5981, in press.
8.
Dawson
,
P. R.
,
Boyce
,
D. E.
,
Hale
,
R.
, and
Durkot
,
J. P.
, 2005, “
An Isoparametric Piecewise Representation of the Anisotropic Strength of Polycrystalline Solids
,”
Int. J. Plast.
0749-6419,
21
, pp.
251
283
.
9.
Kumfert
,
G.
,
Bernholdt
,
D. E.
,
Epperly
,
T.
,
Kohl
,
J.
,
McInnes
,
L. C.
,
Parker
,
S.
, and
Ray
,
J.
, 2006, “
How the Common Component Architecture Advances Computational Science
,”
J. Phys.: Conf. Ser.
1742-6588,
46
, pp.
479
493
.
10.
Dahlgren
,
T.
,
Epperly
,
T.
,
Kumfert
,
G.
, and
Leek
,
J.
, 2006, “
Babel Users’ Guide
,”
Lawrence Livermore National Laboratory
, Technical Report No. UCRL-SM-205559.
11.
Hosford
,
W. F.
, 1993,
The Mechanics of Crystals and Textured Polycrystals
,
Engineering Science Series
,
Oxford University Press
,
New York
.
12.
Lebensohn
,
R. A.
, and
Tomé
,
C. N.
, 1994, “
A Self-Consistent Viscoplastic Model: Prediction of Rolling Textures of Anisotropic Polycrystals
,”
Mater. Sci. Eng., A
0921-5093,
175
, pp.
71
82
.
13.
Bacha
,
A.
,
Maurice
,
C.
,
Klocker
,
H.
, and
Driver
,
J. H.
, 2006, “
The Large-Strain Flow Stress Behavior of Aluminium Alloys as Measured by Channel-Die Compression (20–500Degreesc)
,”
Mater. Sci. Forum
0255-5476,
519–521
, pp.
783
788
.
14.
Anand
,
L.
, and
Spitzig
,
W. A.
, 1908, “
Initiation of Localized Shear Bands in Plane Strain
,”
J. Mech. Phys. Solids
0022-5096,
28
, pp.
113
128
.
15.
Korbel
,
A.
, and
Martin
,
P.
, 1986, “
Microscopic Versus Maroscopic Aspect of Shear Band Deformation
,”
Acta Metall.
0001-6160,
34
(
10
), pp.
1905
1909
.
16.
Harren
,
S. V.
,
Devé
,
H. E.
, and
Asaro
,
R. J.
, 1988, “
Shear Band Formation in Plane Strain Compression
,”
Acta Metall.
0001-6160,
36
(
9
), pp.
2435
2480
.
17.
Matthies
,
S.
,
Wenk
,
H.-R.
, and
Vinel
,
G. W.
, 1988, “
Some Basic Concepts of Texture Analysis and Comparison of Three Methods to Calculate Orientation Distributions from Pole Figures
,”
J. Appl. Crystallogr.
0021-8898,
21
(
4
), pp.
285
304
.
You do not currently have access to this content.