This paper studies the notch effect on low cycle fatigue of Sn–3.5Ag solder. Strain controlled push-pull low cycle fatigue tests were carried out using three circumferential notched specimens at . Cycles to crack initiation were measured by an a.c. potential method, and cycles to failure and for crack propagation were also determined in experiments. Cycles to failure, to crack initiation, and for propagation decreased with elastic stress concentration factor but cycles to crack initiation were most sharply reduced with elastic stress concentration factor. Prediction methods of cycles to crack initiation, for propagation, and to failure were discussed from the data fitting and the local strain approach utilizing finite element analysis.
Issue Section:
Research Papers
1.
Taira
, S.
, Fujino
, M.
, and Ohtani
, R.
, 1979, “Collaborative Study on Thermal Fatigue Properties of High Temperature Alloys in Japan
,” Fatigue Eng. Mater. Struct.
, 1
, pp. 495
–508
.2.
Wundt
, B. M.
, 1972, “Effect of Notches on Low-Cycle Fatigue
,” ASTM STP No. 490.3.
Sakane
, M.
, and Ohnami
, M.
, 1986, “Notch Effect in Low-Cycle Fatigue at Eleveted Temperatures—Life Prediction From Crack Initiation and Propagation Considerations
,” ASME J. Eng. Mater. Technol.
0094-4289, 108
(3
), pp. 279
–284
.4.
Sakane
, M.
, and Ohnami
, M.
, 1988, “Electrical Potential Drop and Notch Opening Displacement Methods for Detecting High Temperature Low Cycle Fatigue Cracks of Circumferential Notched Specimens
,” ASME J. Eng. Mater. Technol.
0094-4289, 110
(3
), pp. 247
–252
.5.
Sakane
, M.
, Ohnami
, M.
, Awaya
, T.
, and Shirafuji
, N.
, 1989, “Frequency and Hold-Time Effects on Low Cycle Fatigue Life of Notched Specimens at Elevated Temperature
,” ASME J. Eng. Mater. Technol.
0094-4289, 111
(1
), pp. 54
–60
.6.
Xie
, X.
, Sun
, X.
, and Jiang
, H.
, 1990, “Notch Effect on High Temperature Fatigue and Creep-Fatigue Behaviour of Nickel-Base and Iron-Base Superalloys
,” Chin. J. Met. Sci. Technol.
1000-3029, 6
(1
), pp. 1
–7
.7.
Neuber
, H.
, 1961, “Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law
,” ASME J. Appl. Mech.
0021-8936, 28
(4
), pp. 544
–550
.8.
Goswami
, T.
, 1999, “Low Cycle Fatigue—Dwell Effects and Damage Mechanisms
,” Int. J. Fatigue
0142-1123, 21
, pp. 55
–76
.9.
Shi
, X. Q.
, Pang
, H. L. J.
, Zhou
, W.
, and Wang
, Z. P.
, 2000, “Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy
,” Int. J. Fatigue
0142-1123, 22
, pp. 217
–228
.10.
Kanchanomai
, C.
, Yamamoto
, S.
, Miyashita
, Y.
, Mutoh
, Y.
, and McEvily
, A. J.
, 2002, “Low Cycle Fatigue Test for Solders Using Non-Contact Digital Image Measurement System
,” Int. J. Fatigue
0142-1123, 24
, pp. 57
–67
.11.
Kanchanomai
, C.
, Miyashita
, Y.
, and Mutoh
, Y.
, 2002, “Low Cycle Fatigue Behavior and Mechanisms of a Eutectic Sn–Pb Solder 63Sn∕37Pb
,” Int. J. Fatigue
0142-1123, 24
, pp. 671
–683
.12.
Kanchanomai
, C.
, Miyashita
, Y.
, and Mutoh
, Y.
, 2002, “Strain-Rate Effects on Low Cycle Fatigue Mechanism of Eutectic Sn–Pb Solder
,” Int. J. Fatigue
0142-1123, 24
, pp. 987
–993
.13.
Kanchanomai
, C.
, and Mutoh
, Y.
, 2004, “Temperature Effect on Low Cycle Fatigue Behavior of Sn–Pb Eutectic Solder
,” Scr. Mater.
1359-6462, 50
, pp. 83
–88
.14.
Andersson
, C.
, Lai
, Z.
, Liu
, J.
, Jiang
, H.
, and Yu
, Y.
, 2005, “Comparison of Isothermal Mechanical Fatigue Properties of Lead-Free Solder Joints and Bulk Solders
,” Mater. Sci. Eng., A
0921-5093, 394
, pp. 20
–27
.15.
Chen
, G.
, and Chen
, X.
, 2006, “Constitutive and Damage Model for 63Sn37Pb Solder Under Uniaxial and Torsional Cyclic Loading
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 3596
–3612
.16.
Chen
, X.
, Song
, J.
, and Kim
, K. S.
, 2006, “Low Cycle Fatigue Life Prediction of 63Sn-37Pb Solder Under Proportional and Non-Proportional Loading
,” Int. J. Fatigue
0142-1123, 28
, pp. 757
–766
.17.
Chen
, X.
, Song
, J.
, and Kim
, K. S.
, 2006, “Fatigue Life of 63Sn–37Pb Solder Related to Load Drop under Uniaxial and Torsional Loading
,” Int. J. Fatigue
0142-1123, 28
, pp. 767
–776
.18.
Kanchanomai
, C.
, Miyashita
, Y.
, Mutoh
, Y.
, and Mannan
, S. L.
, 2003, “Influence of Frequency on Low Cycle Fatigue Behavior of Pb-Free Solder 96.5Sn–3.5Ag
,” Mater. Sci. Eng., A
0921-5093, 345
, pp. 90
–98
.19.
Kanchanomai
, C.
, and Mutoh
, Y.
, 2004, “Effect of Temperature on Isothermal Low Cycle Fatigue Properties of Sn–Ag Eutectic Solder
,” Mater. Sci. Eng., A
0921-5093, 381
, pp. 113
–120
.20.
Pang
, J. H. L.
, Xiong
, B. S.
, and Low
, T. H.
, 2004, “Low Cycle Fatigue Models for Lead-Free Solders
,” Thin Solid Films
0040-6090, 462–463
, pp. 408
–412
.21.
Pang
, J. H. L.
, Xiong
, B. S.
, and Low
, T. H.
, 2004, “Low Cycle Fatigue Study of Lead Free 99.3Sn–0.7Cu Solder Alloy
,” Int. J. Fatigue
0142-1123, 26
, pp. 865
–872
.22.
Shiratsuchi
, T.
, Sakane
, M.
, Tsukada
, Y.
, and Nishimura
, H.
, 1999, “Life Evaluation of 63Sn–37Pb Solder Under Push-Pull Creep-Fatigue
,” Proceedings of 37th Symposium on Strength of Materials at High Temperatures
, The Society of Materials Science
, Japan
, pp. 116
–120
.23.
Yang
, X. J.
, Chow
, C. L.
, and Lau
, K. J.
, 2003, “Time-Dependent Cyclic Deformation and Failure of 63Sn∕37Pb Solder Alloy
,” Int. J. Fatigue
0142-1123, 25
, pp. 533
–546
.24.
Tsukada
, Y.
, Nishimura
, H.
, Yamamoto
, H.
, and Sakane
, M.
, 2005, “A Strain Rate Ratio Approach for Assessing Creep-Fatigue Life of 63Sn–37Pb Solder Under Shear Loading
,” ASME J. Electron. Packag.
1043-7398, 127
, pp. 407
–414
.25.
Nozaki
, M.
, Sakane
, M.
, Tsukada
, Y.
, and Nishimura
, H.
, 2006, “Creep-Fatigue Life Evaluation for Sn–3.5Ag Solder
,” ASME J. Eng. Mater. Technol.
0094-4289, 128
, pp. 142
–150
.26.
JSMS Committee on High Temperature Strength of Materials
, 2000, “Low Cycle Fatigue Standard for Solder Testing
,” The Society of Materials Science, Japan.27.
JSMS Committee on High Temperature Strength of Materials
, 2001, “Factual Database on Tensile and Low Cycles Fatigue Properties of Sn–37Pb and Sn–3.5Ag Solders
,” The Society of Materials Science, Japan.28.
JSMS Committee on High Temperature Strength of Materials, 2000, “
Tension Standard for Solder Testing
,” The Society of Materials Science, Japan.29.
Nose
, H.
, Sakane
, M.
, Tsukada
, Y.
, and Nishimura
, H.
, 2003, “Temperature and Strain Rate Effects on Tensile Strength and Inelastic Constitutive Relationship of Sn–Pb Solders
,” ASME J. Electron. Packag.
1043-7398, 125
(1
), pp. 59
–66
.30.
Stowell
, E. Z.
, 1950, “Stress and Strain Concentration at a Circular Hole in an Infinite Plate
,” NACA TN Report No. 2073.31.
Peterson
, R. E.
, 1965, Stress Concentration Design Factors
, Wiley
, New York
.32.
Nose
, H.
, Sakane
, M.
, Yamashita
, M.
, and Shiokawa
, K.
, 2003, “Crack Initiation and Propagation Behavior of Three Types of Solders in Torsion Low Cycle Fatigue
,” Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008, 69
(684
), pp. 1222
–1229
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.