This paper presents a mixed finite element formulation approximating large deformations observed in the analysis of elastomeric butt-joints. The rubber has been considered as nearly incompressible continuum obeying the Mooney/Rivlin (M/R) strain energy density function. The parameters of the model were determined by fitting the available from the literature uniaxial tension experimental data with the constitutive equation derived from the M/R model. The optimum value of the Poisson ratio is adjusted by comparing the experimentally observed diametral contraction of the model with that numerically obtained using the finite element method. The solution of the problem has been obtained utilizing the mixed finite element procedure on the basis of displacement/pressure mixed interpolation and enhanced strain energy mixed formulation. For comparison purposes, an axisymmetric with two-parameter M/R model and a three-dimensional (3D) with nine-parameters M/R model of the butt-joint are formulated and numerical results are illustrated concerning axisymmetric or general loading. For small strains the stress and/or strain distribution in the 2D axisymmetric butt-joint problem was compared with derived analytical solutions. Stress distributions along critical paths are evaluated and discussed.

1.
Dorfmann
,
A.
,
Fuller
,
K. N. G.
, and
Ogden
,
R. W.
, 2002, “
Shear, Compressive and Dilatational Response of Rubber-Like Solids Subject to Cavitations Damage
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
1845
1861
.
2.
Obata
,
Y.
,
Kawabuta
,
S.
, and
Kawai
,
H.
, 1970, “
Mechanical Properties of NBR Vulcanizates Under Finite Deformation
,”
J. Polym. Sci., Part A-2
0098-1273,
8
, pp.
903
919
.
3.
Ogden
,
R. W.
, 1972, “
Large Deformation Isotropic Elasticity—On The Correlation of Theory and Experiment for Incompressible Rubber Like Solids
,”
Proceedings of the Royal Society
, London, Series A,
326
, pp.
565
584
.
4.
Hibbit
,
H. D.
,
Marcal
,
P. V.
, and
Rice
,
J. R.
, 1972, “
Finite Element Formulation for Problems of Large Strain and Large Displacement
,”
Int. J. Heat Mass Transfer
0017-9310,
6
, pp.
1069
1086
.
5.
James
,
A. G.
, and
Green
,
A.
, 1975, “
Strain Energy Functions of Rubber. II. The Characterization of Filled Vulcanizates
,”
J. Appl. Polym. Sci.
0021-8995,
19
, pp.
2319
2330
.
6.
Chen
,
J. S.
,
Satyamurthy
,
K.
, and
Hirsschfelt
,
L. R.
, 1994, “
Consistent Finite Element Procedures for Nonlinear Rubber Elasticity with a Higher Order Strain Energy Function
,”
Comput. Struct.
0045-7949,
50
, pp.
715
727
.
7.
Herrmann
,
L. H.
, 1964, “
Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variation Theorem
,”
AIAA J.
0001-1452,
2
, pp.
1333
1336
.
8.
Maniatty
,
A. M. L.
,
Klaas
,
Y. O.
, and
Shephard
,
M. S.
, 2002, “
Higher Order Stabilized Finite Element Method for Hyperelastic Finite Deformation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
1491
1503
.
9.
Pantuso
,
D.
, and
Bathe
,
K. J.
, 1997, “
On the Stability of Mixed Finite Elements in Large Strain Analysis of Incompressible Solids
,”
Finite Elem. Anal. Design
0168-874X,
28
, pp.
83
104
.
10.
Pian
,
T. H. H.
, and
Sumihara
,
K.
, 1984, “
Rational Approach for Assumed Stress Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
20
, pp.
1685
1695
.
11.
Brezzi
,
F.
, and
Fortin
,
M.
, 1991,
Mixed and Hybrid Finite Element Methods
,
Springer
, Berlin, Germany.
12.
Pian
,
T. H. H.
, 1995, “
State-of-the-Art Development of Hybrid/Mixed Finite Element Method
,”
Finite Elem. Anal. Design
0168-874X,
21
, pp.
5
20
.
13.
Chang
,
W. V.
, and
Peng
,
S. H.
, 1992, “
Nonlinear Finite Element Analysis of the Butt-Joint Elastomer Specimen
,”
J. Adhes. Sci. Technol.
0169-4243,
6
, pp.
919
939
.
14.
Kakavas
,
P. A.
, and
Chang
,
W. V.
, 1992, “
An Extension of the General Measure of Strain in Hyperelastic Solids
,”
J. Appl. Polym. Sci.
0021-8995,
45
, pp.
865
869
.
15.
Kakavas
,
P. A.
, and
Blatz
,
P. J.
, 1991, “
A Geometric Determination of Void Production in an Elastic Pancake
,”
J. Appl. Polym. Sci.
0021-8995,
43
, pp.
1081
1086
.
16.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1998,
Computational Inelasticity
,
Springer
, New York.
17.
Truesdell
,
C.
, and
Noll
,
W.
, 1965, “
The Non-linear Field Theories of Mechanics
,”
Encyclopedia of Physics
,
S.
Flugge
, ed.,
Springer
, Berlin, Vol.
III/3
.
18.
Ogden
,
R. W.
, 1984,
Nonlinear Elastic Deformations
,
Wiley
, New York.
19.
Simo
,
J. C.
, and
Taylor
,
R. L.
, 1991, “
Quasi-Incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
85
, pp.
273
310
.
20.
Valanis
,
K. C.
, and
Landel
,
R.
, 1967, “
The Strain Energy Function of a Hyperelastic Material in Terms of the Extension Ratios
,”
J. Appl. Phys.
0021-8979,
38
, pp.
2997
3002
.
21.
Mooney
,
M.
, 1940, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
0021-8979,
11
, pp.
582
592
.
22.
Rivlin
,
R. S.
, 1984, “
Forty Years of Nonlinear Continuum Mechanics
,”
Proceedings of the 9th International Congress on Rheology
, Mexico, Sept. 4-7, pp.
1
29
,
23.
Salomon
,
O.
,
Olle
,
S.
, and
Barrat
,
A.
, 1999, “
Finite Element Analysis of Base Isolated Buildings Subjected to Earthquake Loads
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
1741
1761
.
24.
Wilson
,
E.
, 1974, “
The Static Condensation Algorithm
,”
Int. J. Numer. Methods Eng.
0029-5981,
8
, pp.
199
203
.
25.
Bathe
,
K. J.
, 1982,
Finite Element Procedures in Engineering Analysis
,
Prentice–Hall
, Englewood Cliffs, NJ.
26.
Treloar
,
L. R. G.
, 1975,
The Physics of Rubber Elasticity
,
Clarendon
, Oxford, UK.
27.
Peng
,
S. H.
, and
Chang
,
W. V.
, 1997, “
A Compressible Approach in Finite Element Analysis of Rubber-Elastic Materials
,”
Comput. Struct.
0045-7949,
62
, pp.
573
593
.
28.
Kakavas
,
P. A.
, 2000, “
A New Development of the Strain Energy Function for Hyperelastic Materials Using a Log-Strain Approach
,”
J. Appl. Polym. Sci.
0021-8995,
77
, pp.
660
672
.
29.
Criscione
,
J. C.
,
Humphery
,
J. D.
,
Douglas
,
A. S.
, and
Hunter
,
W.
, 2000, “
An Invariant Basis for Natural Strain which Yields Orthogonal Stress Response Terms in Isotropic Hyperelasticity
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
2445
2465
.
30.
Gent
,
A.
, 1996, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
0035-9475,
69
, pp.
59
61
.
31.
Arruda
,
E. M.
, and
Boyce
,
M.
, 1993, “
A Three Dimensional Constitutive Model for the Large Deformation Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
389
412
.
32.
Horgan
,
C. O.
, and
Saccomandi
,
G.
, 1999, “
Pure Axial Shear of Isotropic Hyperelastic Nonlinearly Elastic Materials with Limiting Chain Extensibility
,”
J. Elast.
0374-3535,
57
, pp.
159
170
.
33.
Beatty
,
M. F.
, 2003, “
A Stretch Averaged Full Network Model for Rubber Elasticity
,”
J. Elast.
0374-3535,
70
, pp.
65
86
.
34.
Kakavas
,
P. A.
, and
Blatz
,
P. J.
, 2005, “
New Constitutive Equation for Unfilled Rubbers Based on Maximum Chain Extensibility Approach
,”
Proceedings ECCMR05 Conference Stockholm
, Sweden, June
27
29
.
35.
Williams
,
M.
, and
Schapery
,
R.
, 1965, “
Spherical Flow Instability in Hydrostatic Tension
,”
Int. J. Fract. Mech.
0020-7268,
1
, pp.
64
66
.
36.
Lin
,
Y. Y.
,
Hui
,
C. Y.
, and
Conway
,
H. D.
, 2000, “
A Detailed Elastic Analysis of the Flat Punch (Tack) Test for Pressure Sensitive Adhesives
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
38
, pp.
2769
2784
.
37.
Brown
,
F.
, 1958,
Introduction to Bessel Functions
,
Dover
, New York.
38.
Chalhoub
,
M. S.
, and
Kelly
,
J. M.
, 1990, “
Effect of Bulk Compressibility on the Stiffness of Cylindrical Base Isolation Bearings
,”
Int. J. Solids Struct.
0020-7683,
26
, pp.
743
760
,
39.
Gent
,
A. N.
, 2000,
Engineering with Rubber: How to Design Rubber Components
, 2nd ed.,
Hanser
, Munich, Germany.
You do not currently have access to this content.