The self-consistent (SC) micromechanical model of a composite containing coated micro-inclusions, originally proposed in the static regime by Cherkaoui et al. (1994, J. Eng. Mater. Technol., 116, 274–278), is implemented in the quasistatic regime by the introduction of frequency dependent complex moduli for the matrix material. The original model is improved by using dilute strain concentration tensor (DSCT) formulation. It is shown that these concentration tensors can be used to approximate effective composite behavior of composites containing ellipsoidal inclusions having a known orientation distribution or of composites containing multiple types of coated inclusions. The DSCT formulation is also shown to be capable of modeling the effects of multiple scales (submicron-meso-macro), as well as that of a distribution of inclusion coating thicknesses. Various potential material modeling applications are verified through comparison with experimental data in the literature. Notably, the DSCT SC model is applied in the quasistatic regime for calculation of acoustic transmission loss of a slab of viscoelastic composite submerged in water for the range of frequencies between 0-100kHz and compared with experimental data of Baird et al. (1999, J. Acoust. Soc. Am., 105, 1527–1538).

1.
Kuster
,
G. T.
, and
Toksöz
,
M. N.
, 1974, “
Velocity and Attenuation of Siesmic Waves in Two-Phase Media: Theoretical Formulation
,”
Geophysics
0016-8033,
39
, pp.
587
606
.
2.
Ying
,
C. F.
, and
Truell
,
R.
, 1956, “
Scattering of Plane Longitudinal Waves by a Spherical Obstacle in an Isotropically Elastic Fluid
,”
J. Acoust. Soc. Am.
0001-4966,
27
, pp.
1086
1097
.
3.
Gaunaurd
,
G. C.
, and
Überall
,
H.
, 1982, “
Resonance Theory of the Effecitve Properties of Perforated Solids
,”
J. Acoust. Soc. Am.
0001-4966
71
(
2
), pp.
282
295
.
4.
Waterman
,
P. C.
, and
Truell
,
R.
, 1961, “
Multiple Scattering of Waves
,”
J. Math. Phys.
0022-2488,
2
, pp.
513
537
.
5.
Varadan
,
V. K.
, and
Varadan
,
V. V.
, 1985, “
A Multiple Scattering Theory for Elastic Wave Propagation in Discrete Random Media
,”
J. Acoust. Soc. Am.
0001-4966
77
, pp.
375
385
.
6.
Kerr
,
F.
, 1992, “
The Scattering of a Plane Elastic Wave by a Spherical Elastic Inclusions
,”
Int. J. Eng. Sci.
0020-7225,
30
, pp.
169
186
.
7.
Baird
,
A. M.
,
Kerr
,
F. H.
, and
Townend
,
D. J.
, 1999, “
Wave Propagation in a Viscoelastic Medium Having Fluid-Filled Microspheres
,”
J. Acoust. Soc. Am.
0001-4966
105
, pp.
1527
1538
.
8.
Norris
,
A. N.
, 1986, “
Scattering of Elastic Waves by Spherical Inclusions With Applications to Low Frequency Wave Propagation in Composites
,”
Int. J. Eng. Sci.
0020-7225
24
, pp.
1271
1282
.
9.
Berryman
,
J. G.
, 1980, “
Long-Wavelength Propagation in Composite Elastic Media II. Ellipsoidal Inclusions
,”
J. Acoust. Soc. Am.
0001-4966,
68
(
6
), pp.
1820
1831
.
10.
Ledbetter
,
H. M.
, and
Datta
,
S. K.
, 1986, “
Effective Waves Speeds in an SiC-Particle Reinforced Al Composite
,”
J. Acoust. Soc. Am.
0001-4966,
79
(
2
), pp.
239
248
.
11.
Wu
,
T. T.
, 1966, “
The Effect of Inclusion Shape on the Elastic Moduli of a Two-Phase Material
,”
Int. J. Solids Struct.
0020-7683,
2
, pp.
1
8
.
12.
Lin
,
R. M.
, and
Lim
,
M. K.
, 1995, “
Complex Eigensensitivity-Based Characterization of Structures With Viscoelastic Damping
,”
J. Acoust. Soc. Am.
0001-4966,
100
(
5
), pp.
3182
3191
.
13.
Hwang
S. J.
, and
Gibson
,
R. F.
, 1992, “
The Use of Strain Energy-Based Finite Element Techniques in the Analysis of Various Aspects of Damping of Composite Materials and Structures
,”
J. Compos. Mater.
0021-9983,
26
(
17
), pp.
2585
2605
.
14.
Hwang
,
S. J.
, and
Gibson
,
R. F.
, 1987, “
Micromechanical Modeling of Damping in Discontinuous Fiber Composites Using a Strain Energy∕Finite Element Approach
,”
J. Eng. Mater. Technol.
0094-4289,
109
(
1
), pp.
47
52
.
15.
Lakes
,
R. S.
, 2001, “
Extreme Damping in Composite Materials With a Negative Stiffness Phase
,”
Phys. Rev. Lett.
0031-9007,
86
(
13
), pp.
2897
2900
.
16.
Lakes
,
R. S.
, and
Drugan
,
W. J.
, 2002, “
Dramatically Stiffer Elastic Composite Materials Due to a Negative Stiffness Phase?”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
979
1009
.
17.
Goodier
,
J. N.
, 1933, “
Concentration of Stress Around Spherical and Cylindrical Inclusions and Flaws
,”
Trans. ASME
0097-6822,
55
, pp.
39
44
.
18.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
19.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
, 1994, “
Micromechanical Approach of the Coated Inclusion Problem and Applications to Composite Materials
,”
J. Eng. Mater. Technol.
0094-4289,
116
, pp.
274
278
.
20.
Haberman
,
M.
,
Berthelot
,
Y.
,
Jarzynski
,
J.
, and
Cherkaoui
,
M.
, 2002, “
Micromechanical Modeling of Viscoelastic Composites in the Low Frequency Approximation
,”
J. Acoust. Soc. Am.
0001-4966,
112
(
5
), pp.
1937
1943
.
21.
Budiansky
,
B.
, 1965, “
On the Elastic Moduli of Some Heterogeneous Materials
,”
J. Mech. Phys. Solids
0022-5096,
13
(
4
), pp.
223
227
.
22.
Hill
,
R.
, 1965, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
0022-5096
13
, pp.
213
222
.
23.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1963, “
A Variational Approach to the Theory of the Elastic Behavior of Multi-Phase Materials
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
127
140
.
24.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
25.
Cherkaoui
,
M.
,
Muller
,
D.
,
Sabar
,
H.
, and
Berveiller
,
M.
, 1996, “
Thermoelastic Behavior of Composites With Coated Reinforcements: A Micromechanical Approach and Applications
,”
Comput. Mater. Sci.
0927-0256,
5
(
1–3
), pp.
45
52
.
26.
Haberman
,
M.
,
Berthelot
,
Y.
, and
Cherkaoui
,
M.
, 2005, “
Transmission Loss of Viscoelastic Materials Containing Oriented, Ellipsoidal, Coated Microinclusions
,”
J. Acoust. Soc. Am.
0001-4966,
118
(
5
), pp.
2984
2992
.
27.
Bradshaw
,
R. D.
,
Fisher
,
F. T.
, and
Brinson
,
L. C.
, 2003, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites—II: Modeling via Numerical Approximation of the Dilute Strain Concentration Tensor
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1705
1722
.
28.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
, 2002, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,” NASA∕CR-2002-211760, ICASE Report No. 2002-27.
29.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
, 2003, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites—I: Modulus Predictions Using Effective Nanotube Properties
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1689
1703
.
30.
Hornby
,
B. E.
,
Schwartz
,
L. M.
, and
Hudson
,
J. A.
, 1994, “
Anisotropic Effective-Medium Modeling of the Elastic Properties of Shales
,”
Geophysics
0016-8033,
59
(
10
), pp.
1570
1583
.
31.
Berryman
,
J. G.
, 1980, “
Long-Wavelength Propagation in Composite Elastic Media I: Spherical Inclusions
,”
J. Acoust. Soc. Am.
0001-4966,
68
(
6
), pp.
1809
1819
.
32.
Christensen
,
R. M.
, and
Lo
,
K. H.
, 1979, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
0022-5096,
27
(
4
), pp.
315
330
.
33.
Christensen
,
R. M.
, 1990, “
A Critical Evalutation for a Class of Micromechanics Models
,”
J. Mech. Phys. Solids
0022-5096,
38
(
3
), pp.
379
404
.
34.
Mavko
,
G.
,
Mukerji
,
T.
, and
Dvorkin
,
J.
, 2003,
The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media
,
Cambridge University Press
,
New York
.
35.
Merkel
,
S.
,
Jephcoat
,
A. P.
,
Shu
,
J.
,
Mao
,
H. K.
,
Gillet
,
P.
, and
Hemley
,
R. J.
, 2002, “
Equation of State, Elasticity and Shear Strength of Pyrite Under High Pressure
,”
Phys. Chem. Miner.
0342-1791,
29
, pp.
1
9
.
36.
Jones
,
L. E. A.
, and
Wang
,
H. F.
, 1981, “
Ultrasonic Velocities in Cretaceous Shales From the Williston Basin
,”
Geophysics
0016-8033,
46
, pp.
288
297
.
37.
Christensen
,
R. M.
, 1991,
Mechanics of Composite Materials
, reprint ed. Malabar, Krieger, FL.
38.
Spearot
,
D. E.
,
Jacob
,
K. I.
, and
McDowell
,
D. L.
, 2004, “
Non-Local Separation Constitutive Laws for Interfaces and Their Relation to Nanoscale Simulations
,”
Mech. Mater.
0167-6636
36
(
9
), pp.
825
847
.
39.
Blackstock
,
D. T.
, 2000,
Fundamentals of Physical Acoustics
,
Wiley
,
New York
.
You do not currently have access to this content.