Shape memory alloy (SMA) hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites.
Keywords:
beams (structures),
composite materials,
polymers,
shape memory effects,
finite element analysis,
thermomechanical treatment,
shape memory alloys,
Nitinol,
ABAQUS,
finite element analysis,
post-buckling control,
shape control,
deflection control,
adaptive stiffening,
morphing,
constitutive modeling,
user element
1.
Sittner
, P.
, Michaud
, V.
, and Schrooten
, J.
, 2002, “Modelling and Material Design of SMA Polymer Composites
,” Mater. Trans., JIM
0916-1821, 43
(5
), pp. 984
–993
.2.
Sun
, S. S.
, Sun
, G.
, Han
, F.
, and Wu
, J. S.
, 2002, “Thermoviscoelastic Analysis for a Polymeric Composite Plate With Embedded Shape Memory Alloy Wires
,” Compos. Struct.
0263-8223, 58
(2
), pp. 295
–302
.3.
Armstrong
, W. D.
, 1996, “A One-Dimensional Model of a Shape Memory Alloy Fiber Reinforced Aluminum Metal Matrix Composite
,” J. Intell. Mater. Syst. Struct.
1045-389X, 7
(4
), pp. 448
–454
.4.
Song
, G. Q.
, Sun
, Q. P.
, and Cherkaoui
, M.
, 1999, “Role of Microstructure in the Thermomechanical Behavior of SMA Composites
,” ASME J. Eng. Mater. Technol.
0094-4289, 121
(1
), pp. 86
–92
.5.
Yue
, Z. F.
, and Wan
, J. S.
, 2003, “Constitutive Relationship and Applications of Shape-Memory Alloys
,” Prog. Exp. Comput. Mech. Eng.
, 243
(2
), pp. 487
–491
.6.
Watanabe
, Y.
, Miyazaki
, E.
, and Okada
, H.
, 2002, “Enhanced Mechanical Properties of Fe–Mn–Si–Cr Shape Memory Fiber/Plaster Smart Composite
,” Mater. Trans., JIM
0916-1821, 43
(5
), pp. 974
–983
.7.
Gupta
, K.
, Sawhney
, S.
, Jain
, S. K.
, and Darpe
, A. K.
, 2003, “Stiffness Characteristics of Fibre-Reinforced Composite Shaft Embedded With Shape Memory Alloy Wires
,” Def. Sci. J.
0011-748X, 53
(2
), pp. 167
–173
.8.
Hamada
, K.
, Kawano
, F.
, and Asaoka
, K.
, 2003, “Shape Recovery of Shape Memory Alloy Fiber Embedded Resin Matrix Smart Composite After Crack Repair
,” Dent. Mater. J.
0287-4547, 22
(2
), pp. 160
–167
.9.
Lee
, H. J.
, Lee
, J. J.
, and Huh
, J. S.
, 1999, “A Simulation Study on the Thermal Buckling Behavior of Laminated Composite Shells With Embedded Shape Memory Alloy (SMA) Wires
,” Compos. Struct.
0263-8223, 47
(1–4
), pp. 463
–469
.10.
Brinson
, L. C.
, Huang
, M. S.
, Boller
, C.
, and Brand
, W.
, 1997, “Analysis of Controlled Beam Deflections Using SMA Wires
,” J. Intell. Mater. Syst. Struct.
1045-389X, 8
(1
), pp. 12
–25
.11.
Lind
, R. J.
, and Doumanidis
, C. C.
, 2003, “Active Deformable Sheets: Prototype Implementation, Modeling, and Control
,” Opt. Eng.
0091-3286, 42
(2
), pp. 304
–316
.12.
Oh
, J. T.
, Park
, H. C.
, and Hwang
, W.
, 2001, “Active Shape Control of a Double-Plate Structures Using Piezoceramics and SMA Wires
,” Smart Mater. Struct.
0964-1726, 10
(5
), pp. 1100
–1106
.13.
Aoki
, T.
, and Shimamoto
, A.
, 2003, “Active Vibration Control of Epoxy Matrix Composite Beams With Embedded Shape Memory Alloy TiNi Fibers
,” Int. J. Mod. Phys. B
0217-9792, 17
(8–9
), pp. 1744
–1749
.14.
Brinson
, L. C.
, and Lammering
, R.
, 1993, “Finite-Element Analysis of the Behavior of Shape-Memory Alloys and Their Applications
,” Int. J. Solids Struct.
0020-7683, 30
(23
), pp. 3261
–3280
.15.
Lee
, H. J.
, and Lee
, J. J.
, 2000, “A Numerical Analysis of the Buckling and Postbuckling Behavior of Laminated Composite Shells With Embedded Shape Memory Alloy Wire Actuators
,” Smart Mater. Struct.
0964-1726, 9
(6
), pp. 780
–787
.16.
Birman
, V.
, 1997, “Theory and Comparison of the Effect of Composite and Shape Memory Alloy Stiffeners on Stability of Composite Shells and Plates
,” Int. J. Mech. Sci.
0020-7403, 39
(10
), pp. 1139
–1149
.17.
Boyd
, J. G.
, and Lagoudas
, D. C.
, 1994, “Thermomechanical Response of Shape-Memory Composites
,” J. Intell. Mater. Syst. Struct.
1045-389X, 5
(3
), pp. 333
–346
.18.
Araki
, S.
, Ono
, H.
, and Saito
, K.
, 2002, “Micromechanical Analysis of Crack Closure Mechanism for Intelligent Material Containing TiNi Fibers—(1st Report, Modeling of Crack Closure Mechanism and Analysis of Stress Intensity Factor)
,” JSME Int. J., Ser. A
1340-8046, 45
(2
), pp. 208
–216
.19.
Shimamoto
, A.
, Nam
, J.
, Oguchi
, T.
, and Azakami
, T.
, 2001, “Effect of Crack Closure by Shrinkage of Embedded Shape-Memory TiNi Fiber Epoxy Composite Under Mixed-Mode Loading
,” Int. J. Mater. Prod. Technol.
0268-1900, Suppl. 1, pp. 263
–268
.20.
Wang
, X. M.
, 2002, “Shape Memory Alloy Volume Fraction of Pre-Stretched Shape Memory Alloy Wire-Reinforced Composites for Structural Damage Repair
,” Smart Mater. Struct.
0964-1726, 11
(4
), pp. 590
–595
.21.
Kawai
, M.
, Ogawa
, H.
, Baburaj
, V.
, and Koga
, T.
, 1999, “Micromechanical Analysis for Hysteretic Behavior of Unidirectional TiNiSMA Fiber Composites
,” J. Intell. Mater. Syst. Struct.
1045-389X, 10
(1
), pp. 14
–28
.22.
Ghomshei
, M. M.
, Khajepour
, A.
, Tabandeh
, N.
, and Behdinan
, K.
, 2001, “Finite Element Modeling of Shape Memory Alloy Composite Actuators: Theory And Experiment
,” J. Intell. Mater. Syst. Struct.
1045-389X, 12
(11
), pp. 761
–773
.23.
Sun
, S. S.
, Sun
, G.
, and Wu
, J. S.
, 2002, “Thermo-Viscoelastic Bending Analysis of a Shape Memory Alloy Hybrid Epoxy Beam
,” Smart Mater. Struct.
0964-1726, 11
(6
), pp. 970
–975
.24.
Zak
, A. J.
, Cartmell
, M. P.
, and Ostachowicz
, W.
, 2003, “Dynamics of Multilayered Composite Plates With Shape Memory Alloy Wires
,” Trans. ASME, J. Appl. Mech.
0021-8936, 70
(3
), pp. 313
–327
.25.
Ostachowicz
, W.
, Krawczuk
, M.
, and Zak
, A.
, 1998, “Natural Frequencies of Multi-Layer Composite Plate With Embedded Shape Memory Alloy Wires
,” J. Intell. Mater. Syst. Struct.
1045-389X, 9
(3
), pp. 232
–237
.26.
Lagoudas
, D. C.
, Moorthy
, D.
, Qidwai
, M. A.
, and Reddy
, J. N.
, 1997, “Modeling of the Thermomechanical Response of Active Laminates With SMA Strips Using the Layerwise Finite Element Method
,” J. Intell. Mater. Syst. Struct.
1045-389X, 8
(6
), pp. 476
–488
.27.
Marfia
, S.
, Sacco
, E.
, and Reddy
, J. N.
, 2003, “Superelastic and Shape Memory Effects in Laminated Shape-Memory-Alloy Beams
,” AIAA J.
0001-1452, 41
(1
), pp. 100
–109
.28.
Turner
, T. L.
, Lach
, C. L.
, and Cano
, R. J.
, 2001, “Fabrication and Characterization of SMA Hybrid Composites
,” Proc. SPIE
0277-786X, 4333
, pp. 343
–354
.29.
Turner
, T. L.
, 2000, “Dynamic Response Tuning of Composite Beams by Embedded Shape Memory Alloy Actuators
,” Proc. SPIE
0277-786X, 3991
, pp. 377
–388
.30.
Lach
, C. L.
, Turner
, T. L.
, Taminger
, K. M.
, and Shenoy
, R. N.
, 2002, “Effects of Thermomechanical History on the Tensile Behavior of Nitinol Ribbon
,” Proc. SPIE
0277-786X, 4699
, pp. 323
–334
.31.
Turner
, T. L.
, 2002, “Structural Acoustic Response of a Shape Memory Alloy Hybrid Composite Panel (Lessons Learned)
,” Proc. SPIE
0277-786X, 4701
, pp. 592
–603
.32.
Turner
, T. L.
, Buehrle
, R. D.
, Cano
, R. J.
, and Fleming
, G. A.
, 2004, “Design, Fabrication, and Testing of SMA Enabled Adaptive Chevrons for Jet Noise Reduction
,” Proc. SPIE
0277-786X, 5390
, pp. 297
–308
.33.
Turner
, T. L.
, and Patel
, H. D.
, 2004, “Analysis of SMA Hybrid Composite Structures Using Commercial Codes
,” Proc. SPIE
0277-786X, 5383
, pp. 82
–93
.34.
Turner
, T. L.
, 2000, “A New Thermoelastic Model for Analysis of Shape Memory Alloy Hybrid Composites
,” J. Intell. Mater. Syst. Struct.
1045-389X, 11
(5
), pp. 382
–394
.35.
Burton
, D. S.
, Gao
, X.
, and Brinson
, L. C.
, 2006, “Finite Element Simulation of a Self-Healing Shape Memory Alloy Composite
,” Mech. Mater.
0167-6636, 38
(5–6
), pp. 525
–537
.36.
Gao
, X.
, Qiao
, R.
, and Brinson
, L. C.
, 2006, “Implementation of a 1D Phase-Diagram Based SMA Model Using ABAQUS’ User Element Interface While Considering Orientation, Prestrain and Compression
,” manuscript in preparation.37.
Tanaka
, K.
, Kobayashi
, S.
, and Sato
, Y.
, 1986, “Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys
,” Int. J. Plast.
0749-6419, 2
(1
), pp. 59
–72
.38.
Liang
, C.
, and Rogers
, C. A.
, 1990, “One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials
,” J. Intell. Mater. Syst. Struct.
1045-389X, 1
(2
), pp. 207
–234
.39.
Brinson
, L. C.
, 1993, “One Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions
,” J. Intell. Mater. Syst. Struct.
1045-389X, 4
(2
), pp. 229
–242
.40.
Brinson
, L. C.
, and Huang
, M. S.
, 1996, “Simplifications and Comparisons of Shape Memory Alloy Constitutive Models
,” J. Intell. Mater. Syst. Struct.
1045-389X, 7
(1
), pp. 108
–114
.41.
Bekker
, A.
, and Brinson
, L. C.
, 1998, “Phase Diagram Based Description of the Hysteresis Behavior of Shape Memory Alloys
,” Acta Mater.
1359-6454, 46
(10
), pp. 3649
–3665
.42.
Zak
, A. J.
, Cartmell
, M. P.
, Ostachowicz
, W. M.
, and Wiercigroch
, M.
, 2003, “One-Dimensional Shape Memory Alloy Models for Use With Reinforced Composite Structures
,” Smart Mater. Struct.
0964-1726, 12
(3
), pp. 338
–346
.43.
Liang
, C.
, 1990, “The Constitutive Modeling of Shape Memory Alloys
,” Ph.D. thesis, Virginia Tech.44.
Dye
, T. E.
, 1990, “An Experimental Investigation of the Behavior of Nitinol
,” MS thesis, Virginia Tech.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.