Shape memory alloy (SMA) hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites.

1.
Sittner
,
P.
,
Michaud
,
V.
, and
Schrooten
,
J.
, 2002, “
Modelling and Material Design of SMA Polymer Composites
,”
Mater. Trans., JIM
0916-1821,
43
(
5
), pp.
984
993
.
2.
Sun
,
S. S.
,
Sun
,
G.
,
Han
,
F.
, and
Wu
,
J. S.
, 2002, “
Thermoviscoelastic Analysis for a Polymeric Composite Plate With Embedded Shape Memory Alloy Wires
,”
Compos. Struct.
0263-8223,
58
(
2
), pp.
295
302
.
3.
Armstrong
,
W. D.
, 1996, “
A One-Dimensional Model of a Shape Memory Alloy Fiber Reinforced Aluminum Metal Matrix Composite
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
7
(
4
), pp.
448
454
.
4.
Song
,
G. Q.
,
Sun
,
Q. P.
, and
Cherkaoui
,
M.
, 1999, “
Role of Microstructure in the Thermomechanical Behavior of SMA Composites
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
(
1
), pp.
86
92
.
5.
Yue
,
Z. F.
, and
Wan
,
J. S.
, 2003, “
Constitutive Relationship and Applications of Shape-Memory Alloys
,”
Prog. Exp. Comput. Mech. Eng.
,
243
(
2
), pp.
487
491
.
6.
Watanabe
,
Y.
,
Miyazaki
,
E.
, and
Okada
,
H.
, 2002, “
Enhanced Mechanical Properties of Fe–Mn–Si–Cr Shape Memory Fiber/Plaster Smart Composite
,”
Mater. Trans., JIM
0916-1821,
43
(
5
), pp.
974
983
.
7.
Gupta
,
K.
,
Sawhney
,
S.
,
Jain
,
S. K.
, and
Darpe
,
A. K.
, 2003, “
Stiffness Characteristics of Fibre-Reinforced Composite Shaft Embedded With Shape Memory Alloy Wires
,”
Def. Sci. J.
0011-748X,
53
(
2
), pp.
167
173
.
8.
Hamada
,
K.
,
Kawano
,
F.
, and
Asaoka
,
K.
, 2003, “
Shape Recovery of Shape Memory Alloy Fiber Embedded Resin Matrix Smart Composite After Crack Repair
,”
Dent. Mater. J.
0287-4547,
22
(
2
), pp.
160
167
.
9.
Lee
,
H. J.
,
Lee
,
J. J.
, and
Huh
,
J. S.
, 1999, “
A Simulation Study on the Thermal Buckling Behavior of Laminated Composite Shells With Embedded Shape Memory Alloy (SMA) Wires
,”
Compos. Struct.
0263-8223,
47
(
1–4
), pp.
463
469
.
10.
Brinson
,
L. C.
,
Huang
,
M. S.
,
Boller
,
C.
, and
Brand
,
W.
, 1997, “
Analysis of Controlled Beam Deflections Using SMA Wires
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
(
1
), pp.
12
25
.
11.
Lind
,
R. J.
, and
Doumanidis
,
C. C.
, 2003, “
Active Deformable Sheets: Prototype Implementation, Modeling, and Control
,”
Opt. Eng.
0091-3286,
42
(
2
), pp.
304
316
.
12.
Oh
,
J. T.
,
Park
,
H. C.
, and
Hwang
,
W.
, 2001, “
Active Shape Control of a Double-Plate Structures Using Piezoceramics and SMA Wires
,”
Smart Mater. Struct.
0964-1726,
10
(
5
), pp.
1100
1106
.
13.
Aoki
,
T.
, and
Shimamoto
,
A.
, 2003, “
Active Vibration Control of Epoxy Matrix Composite Beams With Embedded Shape Memory Alloy TiNi Fibers
,”
Int. J. Mod. Phys. B
0217-9792,
17
(
8–9
), pp.
1744
1749
.
14.
Brinson
,
L. C.
, and
Lammering
,
R.
, 1993, “
Finite-Element Analysis of the Behavior of Shape-Memory Alloys and Their Applications
,”
Int. J. Solids Struct.
0020-7683,
30
(
23
), pp.
3261
3280
.
15.
Lee
,
H. J.
, and
Lee
,
J. J.
, 2000, “
A Numerical Analysis of the Buckling and Postbuckling Behavior of Laminated Composite Shells With Embedded Shape Memory Alloy Wire Actuators
,”
Smart Mater. Struct.
0964-1726,
9
(
6
), pp.
780
787
.
16.
Birman
,
V.
, 1997, “
Theory and Comparison of the Effect of Composite and Shape Memory Alloy Stiffeners on Stability of Composite Shells and Plates
,”
Int. J. Mech. Sci.
0020-7403,
39
(
10
), pp.
1139
1149
.
17.
Boyd
,
J. G.
, and
Lagoudas
,
D. C.
, 1994, “
Thermomechanical Response of Shape-Memory Composites
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
5
(
3
), pp.
333
346
.
18.
Araki
,
S.
,
Ono
,
H.
, and
Saito
,
K.
, 2002, “
Micromechanical Analysis of Crack Closure Mechanism for Intelligent Material Containing TiNi Fibers—(1st Report, Modeling of Crack Closure Mechanism and Analysis of Stress Intensity Factor)
,”
JSME Int. J., Ser. A
1340-8046,
45
(
2
), pp.
208
216
.
19.
Shimamoto
,
A.
,
Nam
,
J.
,
Oguchi
,
T.
, and
Azakami
,
T.
, 2001, “
Effect of Crack Closure by Shrinkage of Embedded Shape-Memory TiNi Fiber Epoxy Composite Under Mixed-Mode Loading
,”
Int. J. Mater. Prod. Technol.
0268-1900,
Suppl. 1, pp.
263
268
.
20.
Wang
,
X. M.
, 2002, “
Shape Memory Alloy Volume Fraction of Pre-Stretched Shape Memory Alloy Wire-Reinforced Composites for Structural Damage Repair
,”
Smart Mater. Struct.
0964-1726,
11
(
4
), pp.
590
595
.
21.
Kawai
,
M.
,
Ogawa
,
H.
,
Baburaj
,
V.
, and
Koga
,
T.
, 1999, “
Micromechanical Analysis for Hysteretic Behavior of Unidirectional TiNiSMA Fiber Composites
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
10
(
1
), pp.
14
28
.
22.
Ghomshei
,
M. M.
,
Khajepour
,
A.
,
Tabandeh
,
N.
, and
Behdinan
,
K.
, 2001, “
Finite Element Modeling of Shape Memory Alloy Composite Actuators: Theory And Experiment
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
12
(
11
), pp.
761
773
.
23.
Sun
,
S. S.
,
Sun
,
G.
, and
Wu
,
J. S.
, 2002, “
Thermo-Viscoelastic Bending Analysis of a Shape Memory Alloy Hybrid Epoxy Beam
,”
Smart Mater. Struct.
0964-1726,
11
(
6
), pp.
970
975
.
24.
Zak
,
A. J.
,
Cartmell
,
M. P.
, and
Ostachowicz
,
W.
, 2003, “
Dynamics of Multilayered Composite Plates With Shape Memory Alloy Wires
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
70
(
3
), pp.
313
327
.
25.
Ostachowicz
,
W.
,
Krawczuk
,
M.
, and
Zak
,
A.
, 1998, “
Natural Frequencies of Multi-Layer Composite Plate With Embedded Shape Memory Alloy Wires
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
9
(
3
), pp.
232
237
.
26.
Lagoudas
,
D. C.
,
Moorthy
,
D.
,
Qidwai
,
M. A.
, and
Reddy
,
J. N.
, 1997, “
Modeling of the Thermomechanical Response of Active Laminates With SMA Strips Using the Layerwise Finite Element Method
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
(
6
), pp.
476
488
.
27.
Marfia
,
S.
,
Sacco
,
E.
, and
Reddy
,
J. N.
, 2003, “
Superelastic and Shape Memory Effects in Laminated Shape-Memory-Alloy Beams
,”
AIAA J.
0001-1452,
41
(
1
), pp.
100
109
.
28.
Turner
,
T. L.
,
Lach
,
C. L.
, and
Cano
,
R. J.
, 2001, “
Fabrication and Characterization of SMA Hybrid Composites
,”
Proc. SPIE
0277-786X,
4333
, pp.
343
354
.
29.
Turner
,
T. L.
, 2000, “
Dynamic Response Tuning of Composite Beams by Embedded Shape Memory Alloy Actuators
,”
Proc. SPIE
0277-786X,
3991
, pp.
377
388
.
30.
Lach
,
C. L.
,
Turner
,
T. L.
,
Taminger
,
K. M.
, and
Shenoy
,
R. N.
, 2002, “
Effects of Thermomechanical History on the Tensile Behavior of Nitinol Ribbon
,”
Proc. SPIE
0277-786X,
4699
, pp.
323
334
.
31.
Turner
,
T. L.
, 2002, “
Structural Acoustic Response of a Shape Memory Alloy Hybrid Composite Panel (Lessons Learned)
,”
Proc. SPIE
0277-786X,
4701
, pp.
592
603
.
32.
Turner
,
T. L.
,
Buehrle
,
R. D.
,
Cano
,
R. J.
, and
Fleming
,
G. A.
, 2004, “
Design, Fabrication, and Testing of SMA Enabled Adaptive Chevrons for Jet Noise Reduction
,”
Proc. SPIE
0277-786X,
5390
, pp.
297
308
.
33.
Turner
,
T. L.
, and
Patel
,
H. D.
, 2004, “
Analysis of SMA Hybrid Composite Structures Using Commercial Codes
,”
Proc. SPIE
0277-786X,
5383
, pp.
82
93
.
34.
Turner
,
T. L.
, 2000, “
A New Thermoelastic Model for Analysis of Shape Memory Alloy Hybrid Composites
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
(
5
), pp.
382
394
.
35.
Burton
,
D. S.
,
Gao
,
X.
, and
Brinson
,
L. C.
, 2006, “
Finite Element Simulation of a Self-Healing Shape Memory Alloy Composite
,”
Mech. Mater.
0167-6636,
38
(
5–6
), pp.
525
537
.
36.
Gao
,
X.
,
Qiao
,
R.
, and
Brinson
,
L. C.
, 2006, “
Implementation of a 1D Phase-Diagram Based SMA Model Using ABAQUS’ User Element Interface While Considering Orientation, Prestrain and Compression
,” manuscript in preparation.
37.
Tanaka
,
K.
,
Kobayashi
,
S.
, and
Sato
,
Y.
, 1986, “
Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys
,”
Int. J. Plast.
0749-6419,
2
(
1
), pp.
59
72
.
38.
Liang
,
C.
, and
Rogers
,
C. A.
, 1990, “
One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
1
(
2
), pp.
207
234
.
39.
Brinson
,
L. C.
, 1993, “
One Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
4
(
2
), pp.
229
242
.
40.
Brinson
,
L. C.
, and
Huang
,
M. S.
, 1996, “
Simplifications and Comparisons of Shape Memory Alloy Constitutive Models
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
7
(
1
), pp.
108
114
.
41.
Bekker
,
A.
, and
Brinson
,
L. C.
, 1998, “
Phase Diagram Based Description of the Hysteresis Behavior of Shape Memory Alloys
,”
Acta Mater.
1359-6454,
46
(
10
), pp.
3649
3665
.
42.
Zak
,
A. J.
,
Cartmell
,
M. P.
,
Ostachowicz
,
W. M.
, and
Wiercigroch
,
M.
, 2003, “
One-Dimensional Shape Memory Alloy Models for Use With Reinforced Composite Structures
,”
Smart Mater. Struct.
0964-1726,
12
(
3
), pp.
338
346
.
43.
Liang
,
C.
, 1990, “
The Constitutive Modeling of Shape Memory Alloys
,” Ph.D. thesis, Virginia Tech.
44.
Dye
,
T. E.
, 1990, “
An Experimental Investigation of the Behavior of Nitinol
,” MS thesis, Virginia Tech.
You do not currently have access to this content.