This work illustrates viscoelastic testing and fractional derivative modelling to describe the thermally induced transformation equivalent viscoelastic damping of NiTiCu SMA ribbons. NiTiCu SMA ribbons have been recently evaluated to manufacture novel honeycombs concepts (conventional and negative Poisson’s ratio) in shape memory alloys for high damping and deployable sandwich antennas constructions. The dynamic mechanical thermal analysis (DMTA) test has been carried out at different frequencies and temperatures, with increasing and decreasing temperature gradients. Thermally induced transformations (austenitic and martensitic) provide damping peaks at low frequency range excitations. On the opposite, the storage moduli are not affected by the harmonic pulsation. As the SMA ribbon increases its stiffness, the damping capacity reduces, and the loss factor drops dramatically at austenite finish temperature. The fractional derivative models provide a compact representation of the asymmetry of the peak locations, as well as the storage modulus change from martensite to austenite phases.

1.
Dejonghe
,
W.
,
Delaey
,
L.
, De
Batist
,
R.
, and Van
Humbeeck
,
J.
, 1977, “
Temperature and Amplitude Dependence on Internal Friction in Cu-ZṉAl Alloys
,”
Metall. Trans. A
0360-2133,
24A
, pp.
2189
2194
.
2.
Piedboeuf
,
M. C.
, and
Gauvin
,
R.
, 1998, “
Damping Behaviour of Shape Memory Alloys: Strain Amplitude, Frequency and Temperature Effects
,”
J. Sound Vib.
0022-460X,
214
(
5
), pp.
885
901
.
3.
Gandhi
,
F.
, and
Wolons
,
R.
, 1999, “
Characterization of the Pseudoelastic Damping Behaviour Of Shape Memory Alloy Wires Using the Complex Modulus
,”
Smart Mater. Struct.
0964-1726,
8
, pp.
49
56
.
4.
Sun
,
C. T.
, and
Lu
,
Y. P.
, 1995.
Vibration Damping of Structural Elements
,
Prentice-Hall
,
Englewood Cliffs
, NJ.
5.
Biscarini
,
A.
,
Coluzzi
,
B.
,
Mazzolai
,
G.
,
Tuissi
,
A.
, and
Mazzolai
,
F.
, 2003, “
Extraordinary High Damping of Hydrogen-Doped Niti and Niticu Shape Memory Alloys
,”
J. Alloys Compd.
0925-8388,
355
, pp.
52
57
.
6.
Lu
,
X. L.
,
Cai
,
W.
, and
Zhao
,
L. C.
, 2003, “
Damping Behaviour of a Ti44Ni47Nb9 Shape Memory Alloy
,”
J. Mater. Sci. Lett.
0261-8028,
22
, pp.
1243
1245
.
7.
Malovhr
,
B.
, and
Gandhi
,
F.
, 2001, “
Mechanism-Based Phenomenological Models for the Pseudoelastic Hysteresis Behaviour of Shape Memory Alloys
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
12
, pp.
21
30
.
8.
Oberaigner
,
E. R.
,
Tanaka
,
T.
, and
Fischer
,
F. D.
, 1996, “
Investigations of the Damping Behaviour of a Vibrating Shape Memory Alloy Rod Using a Micromechanical Model
,”
Smart Mater. Struct.
0964-1726,
3
, pp.
456
463
.
9.
Tanaka
,
K.
, 1986, “
A Thermomechanical Sketch for Shape Memory Alloy Effect: One-Dimensional Tensile Behaviour
,”
Res. Mech.
0143-0084,
18
, pp.
251
263
.
10.
Liang
,
C.
, and
Rogers
,
C. A.
, 1990, “
One Dimensional Thermomechanical Constitutive Relations for Shape Memory Material
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
1
, pp.
207
234
.
11.
Brinson
,
L. C.
, 1993, “
One-Dimensional Constitutive Behaviour of Shape Memory Alloys: Thermomecanical Derivation With Non-Constant Material Functions
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
4
, pp.
229
242
.
12.
Zak
,
A. J.
,
Cartmell
,
M. P.
,
Ostachowicz
,
W. M.
, and
Wiercigroch
,
M.
, 2003, “
One-Dimensional Shape Memory Alloy Models for Use With Reinforced Composite Structures
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
338
346
.
13.
Hassan
,
M. R.
,
Scarpa
,
F.
, and
Mohamed
,
N. A.
, 2004, “
Shape Memory Alloy Honeycomb: Design and Properties
,”
Proceedings of the SPIE Smart Material Structure Conference, paper 5387-99
,
San Diego
, 11–18 March, CA.
14.
Havriliak
,
S.
, and
Negami
,
S.
, 1966, “
A Complex Plane Analysis of α-Dispersion in Some Polymer Systems
,”
J. Polym. Sci., Part C: Polym. Symp.
0449-2994,
14
, pp.
99
117
.
15.
Jones
,
D. I.
, 2002,
Handbook of Viscoelastic Vibration Damping
,
Wiley
,
Chichester, UK
.
16.
Lakes
,
R. S.
, 1999,
Viscoelastic Solids
,
CRC Press
,
London
.
17.
Metravib
,
V. A.
, 2000,
Viscoanalyser Manual, 2001
,
Metravib Spa
,
Lyons, FR
.
18.
Mazzolai
,
F. M.
,
Biscarini
,
A.
,
Campanella
,
R.
,
Coluzzi
,
B.
,
Mazzolai
,
G.
,
Rotini
,
A.
, and
Tuissin
,
A.
, 2003, “
Internal Friction Spectra of the Ni40Ti50Cu10 Shape Memory Alloy Charged With Hydrogen
,”
Acta Mater.
1359-6454,
51
, pp.
573
581
.
You do not currently have access to this content.