We studied microstructure changes of 304-type austenitic stainless steel subjected to a tensile stress at . We monitored the shear-wave attenuation and velocity using electromagnetic acoustic resonance (EMAR). The attenuation peaks at 40% to 50% and a minimum value at 70% of the creep life, being independent of the applied stress. A drastic change in dislocation mobility and arrangement interrupted this novel attenuation phenomenon, as supported by SEM and TEM observations. The relationship between attenuation change and microstructure evolution can be explained with the string’s model. EMAR demonstrates a potential for assessing damage advance and predicting the remaining creep life of metals.
1.
Viswanathan
, R.
, 1989, Damage Mechanism and Life Assessment of High Temperature Components
, ASME International
, Ohio, pp. 1
–20
.2.
R. B.
Dooley
and R.
Viswanathan
, editors, 1987, “Life Extension and Assessment of Fossil Power Plants
,” Proceedings of Conference in Washington
, ERPICS5208, Electric Power Research Institute
, Palo Alto, CA
.3.
Raj
, R.
, Moorthy
, V.
, Jayakumar
, T.
, and Bhanu Sankara Rao
, K.
, 2003, “Assessment of Microstructures and Mechanical Behavior of Metalllic Materials Through Non-Destructive Characterization
,” Int. Mater. Rev.
0950-6608, 48
, pp. 273
–325
.4.
Drion
, D. S.
, Liaw
, P. K.
, Rishel
, R. D.
, Devine
, M. K.
, and Jiles
, D. C.
, 1992, “Nondestructive Evaluation of Material Properties in Nuclear Power Plant Industry
,” PVP-Vol.239∕MPC-Vol.33, Serviceability of Petroleum Process and Power Equipment
, ASME
, pp. 5
–14
.5.
Dobmann
, G.
, Kroning
, M.
, Theiner
, W.
, Willems
, H.
, and Fiedler
, U.
, 1995, “Nondestructive Characterization of Materials (Ultrasonic and Micromagnetic Techniques) for Strength and Toughness Prediction and Detection of Early Creep Damage
,” Nucl. Eng. Des.
0029-5493, 157
, pp. 137
–158
.6.
Auerkari
, P.
, and Salonen
, J.
, 1989, “Accuracy Requirement for Life Assessment
,” Int. J. Pressure Vessels Piping
0308-0161, 39
, pp. 135
–144
.7.
Neubauer
, B.
, and Wedel
, U.
, 1983, “Rest Life Estimation of Creep Components by Means of Replica
,” In Advances in Life Prediction Methods
, edited by D. A.
Woodford
and J. R.
Whitehead
, ASME
, New York
, pp. 307
–314
.8.
Delong
, R. T.
, 1987, Standard Practice for Prediction and Evaluation of Field Metallographic Replicas
, ASTM E12-87
, Philadelphia.9.
Jaske
, C. E.
, Simonen
, F. A.
, and Roach
, D. B.
, 1983, “Predict Reformer Furnace Tube Life
,” Hydrocarbon Process.
0018-8190, 62
, pp. 63
–68
.10.
Willems
, H.
, Bendick
, W.
, and Weber
, H.
1987, “Nondestructive Evaluation of Creep Damage in Service Exposed 14 MoV 63 Steel
,” in Nondestructive Characterization of Materials II
, edited by J. F.
Brussiere
, J.
Monchalin
, X.
Rudd
, and R. E.
Green
, Jr., Plenum
, New York
, pp. 451
–459
.11.
Ledbetter
, H. M.
, Fields
, R. J.
, and Datta
, S. K.
, 1987, “Creep Cavities in Copper: An Ultrasonic Velocity and Composite Modeling Study
,” Acta Metall.
0001-6160, 35
, pp. 2393
–2398
.12.
Nakashiro
, M.
, Yoneyama
, H.
, and Ohtomo
, A.
, 1987, “Assessment for Creep Damage of Boiler Tube by Newly Researched Ultrasonic Technique
,” International Conference on Advances in Material Technology for Fossil Power Plants, ASME International
, Metals Parks, OH, pp. 351
–358
.13.
Kishimoto
, S.
, Shinya
, N.
, Matsumoto
, S.
, and Fukuhara
, H.
, 1988, “Evaluation of Creep Cavity by Measurement of Ultrasonic Velocity
,” in Proceeding of 26th Symposium on Strength of Materials at High Temperature
, The Society of Materials Science
, Tokyo
, pp. 11
–15
(in Japanese).14.
Birring
, A. S.
, Alcazer
, D. G.
, Hanley
, J. J.
, and Gehl
, S.
, 1989, “Detection of Creep Damage by Ultrasonics
,” in Review of Progress in Quantitative Non-Destructive Evaluation
, edited by D. O.
Thompson
and D. E.
Chimenti
, Plenum
, New York
, Vol. 8B
, pp. 1833
–1840
.15.
Hirao
, M.
, Morishita
, T.
, and Fukuoka
, H.
, 1990, “Creep Damage Modeling Based on Ultrasonic Velocities in Copper
,” Metall. Trans. A
0360-2133, 21A
, pp. 1725
–1732
.16.
Matsubara
, M.
, and Nitta
, A.
, 1993, “Creep Damage Detection For a Steam Turbine Rotor Material After Long-Term Service Using Ultrasonic Technique
,” Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008, A59
, pp. 2061
–2068
.17.
Etienne
, C. F.
, Heerings
, J. H.
, van Wortel
, J. C.
, Dufour
, L. B.
, van Dijik
, G. M.
, and Fokkenns
, J. H.
, 1992, “Dutch Development in Design and Behavior of Creep Loaded Structures
,” in Proceeding of the 5th International Conference on Creep of Materials
, ASM International
, OH
, pp. 453
–459
.18.
Morishita
, T.
, and Hirao
, M.
, 1997, “Creep Damage Modeling Based on Ultrasonic Velocities in Copper
,” Int. J. Solids Struct.
0020-7683, 34
, pp. 1169
–1175
.19.
Goebbels
, K.
, 1980, “Structure Analysis by Scattered Ultrasonic Radiation
,” Res. Tech. in NDT, Vol. 4
, pp. 87
–157
.20.
Hirao
, M.
, Ogi
, H.
, and Fukuoka
, H.
, 1993, “Resonance EMAT System For Acoustoelastic Stress Measurement in Sheet Metals
,” Rev. Sci. Instrum.
0034-6748, 64
, pp. 3198
–3205
.21.
Hirao
, M.
, and Ogi
, H.
, 1997, “Electromagnetic Acoustic Resonance and Materials Characterization
,” Ultrasonics
0041-624X, 35
, pp. 413
–421
.22.
Ohtani
, T.
, Ogi
, H.
, and Hirao
, M.
, 1999, “Advanced EMAT-Resonant Technique For Assessment of Damage Accumulation and Remaining Life of Crept Stainless Steel
,” in Rev. Prog. in QNDE
, edited by D. O.
Thompson
and D. E.
Chimenti
, Vol. 18
, pp. 1847
–1854
.23.
Ohtani
, T.
, Ogi
, H.
, and Hirao
, M.
, 2005, “Acoustic Damping Characterization and Microstructure Evolution of Ni-Based Superalloy During Creep
,” Int. J. Solids Struct.
0020-7683, 42
, pp. 2911
–2928
.24.
Ohtani
, T.
, Ogi
, H.
, and Hirao
, M.
, 2005, “Change of Ultrasonic Attenuation and Microstructure Evolution During Creep of 2.25%Cr-1%Mo Steels
,” Metall. Mater. Trans. A
1073-5623, 36A
, pp. 411
–420
.25.
Smith
, G. V.
, 1969, An Evaluation of the Yield, Tensile, Creep and Rupture Strengths of Wrought 304, 316, 321 and 347 Stainless Steels at Elevated Temperatures, ASTM Data Series DS 5S2, ATSM, PA, 1969, pp. 1
–82
.26.
R. D.
Davis
, editor, 1994, ASM Special Handbook, Stainless Steel
, ASM International
, OH, pp. 20
–32
.27.
Maxfield
, B. W.
, and Fortuko
, C. M.
, 1983, “The Design and Use of Electromagnetic Acoustic Wave Transducers (EMATs)
,” Mater. Eval.
0025-5327, 11
, pp. 1399
–1408
.28.
Wilbrand
, A.
, 1990, “Quantitative Modeling and Experimental Analysis of the Physical Properties of Electromagnetic-Ultrasonic Transducer
,” in Review of Progress in QNDE
, edited by D. O.
Thompson
and D. E.
Chimenti
, Plenum
, New York
, Vol. 7A
, pp. 671
–680
.29.
Thompson
, R. B.
, 1990, “Physical Principle of Measurement With EMAT Transducer
,” in Physical Acoustics
, edited by R. N.
Thurston
and A. D.
Pierce
, Academic
, New York
, Vol. XIX
, pp. 157
–181
.30.
Furtunko
, C. M.
, Petersen
, G. L.
, Chick
, B. B.
, Renken
, M. C.
, and Peris
, A. L.
, 1992, “Absolute Measurement of Elastic-Wave Phase and Group Velocities in Lossy materials
,” Rev. Sci. Instrum.
0034-6748, 63
, pp. 3477
–3486
.31.
Ogi
, H.
, Hirao
, M.
, and Honda
, T.
, 1995, “Ultrasonic Attenuation and Grain-Size Evaluation Using Electromagnetic Acoustic Resonance
,” J. Acoust. Soc. Am.
0001-4966, 98
, pp. 458
–464
.32.
Maruyama
, K.
, Harada
, C.
, and Oikawa
, H.
, 1985, “A Strain-Time Equation Applicable Up to Tertiary Creep Stage
,” J. Soc. Mater. Sci. Jpn.
0514-5163, 34
, pp. 1289
–1295
.33.
Maruyama
, K.
, and Oikawa
, H.
, 1987, “An Extrapolation Procedure of Creep Data For St Determination: With Special Reference to Cr-Mo-V Steel
,” ASME J. Pressure Vessel Technol.
0094-9930, 109
, pp. 142
–148
.34.
Truell
, R.
, Elbaum
, C.
, and Chick
, B.
, 1969, Ultrasonic Methods in Solid State Physics
, Academic
, New York
, pp. 159
–249
.35.
Granato
, A.
, and Lücke
, K.
, 1956, “Theory of Mechanical Damping Due to Dislocations
” J. Appl. Phys.
0021-8979, 27
, pp. 583
–593
.36.
Pahutova
, M.
, and Cadek
, J.
, 1984, “Transients in the Creep of a 16Cr-12Ni-2.5Mo Austenitic Steel II: Structure
,” Mater. Sci. Eng.
0025-5416, 62
, pp. 33
–40
.37.
Hirao
, M.
, Ogi
, H.
, Suzuki
, N.
, and Ohtani
, T.
, 2000, “Ultrasonic Attenuation Peak During Fatigue of Polycrystalline Copper
,” Acta Mater.
1359-6454, 48
, pp. 517
–524
.38.
Ohtani
, T.
, Ogi
, H.
, and Hirao
, M.
, 2000, “Ultrasonic Attenuation Monitoring of Fatigue Damage in Low Carbon Steels With Electromagnetic Acoustic Resonance
,” J. Alloys Compd.
0925-8388, 310
, pp. 440
–444
.39.
Ogi
, H.
, Minami
, Y.
, and Hirao
, M.
, 2002, “Acoustic Study of Dislocation Rearrangement at Later Stages of Fatigue: Noncontact Prediction of Remaining Life
,” J. Appl. Phys.
0021-8979, 91
, pp. 1849
–1854
.40.
Keh
, A. S.
, and Weissmann
, S.
, 1963, “Deformation Substructure in Body-Centered Cubic Metals
,” in Electron Microscopy and Strength of Crystals
, edited by G.
Thomas
and J.
Washburn
, Interscience
, New York
, pp. 231
–299
.41.
Barrett
, C. R.
, Nix
, W. D.
, and Sherby
, O. D.
, 1966, “The Influence of Strain and Grain Size on the Creep Substructure of Fe-3Si
,” Trans. ASME
0097-6822, 59
, pp. 3
–15
.42.
Orlova
, A.
, and Cadek
, J.
, 1973, “Some Substructure Aspects of High-Temperature Creep in Metals
,” Philos. Mag.
0031-8086, 28
, pp. 891
–899
.43.
Hasegawa
, T.
, Ikeuchi
, Y.
, and Karashima
, S.
, 1972, “Internal Stress and Dislocation Structure During Sigmoidal Transient Creep of a Copper-16at.‐% Aluminum Alloy
,” Met. Sci. J.
0026-0681, 6
, pp. 78
–82
.44.
Sikka
, V. L.
, Nahm
, H.
, and Moteff
, J.
, 1975, “Some Aspects of Sub-boundary and Mobile Dislocations During High Temperature Creep of AISI 316 and 304 Stainless Steels
,” Mater. Sci. Eng.
0025-5416, 20
, pp. 55
–62
.45.
Takeuchi
, S.
, and Argon
, A. S.
, 1976, “Review Steady-State Creep of Single-Phase Crystalline Matter at High Temperature
,” J. Mater. Sci.
0022-2461, 11
, pp. 1542
–1566
.46.
Okazaki
, K.
, Hashimoto
, M.
, and Sada
, T.
, 1992, “An Approach on Nondestructive Detection of Creep Damage in SUS316 Steel Through Ultrasonic Attenuation Properties
,” J. Soc. Mater. Sci. Jpn.
0514-5163, 41
, pp. 1729
–1735
.47.
Cadek
, J.
, 1988, Creep in Metallic Materials
, Elservier
, Amsterdam
, pp. 95
–114
.48.
Nabarro
, F. R. N.
, and de Villier
, H. L.
, 1995, The Physics of Creep: Creep and Creep-resistant Alloys
, Taylor & Francis
, London
, pp. 15
–43
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.