We studied microstructure changes of 304-type austenitic stainless steel subjected to a tensile stress at 973K. We monitored the shear-wave attenuation and velocity using electromagnetic acoustic resonance (EMAR). The attenuation peaks at 40% to 50% and a minimum value at 70% of the creep life, being independent of the applied stress. A drastic change in dislocation mobility and arrangement interrupted this novel attenuation phenomenon, as supported by SEM and TEM observations. The relationship between attenuation change and microstructure evolution can be explained with the string’s model. EMAR demonstrates a potential for assessing damage advance and predicting the remaining creep life of metals.

1.
Viswanathan
,
R.
, 1989,
Damage Mechanism and Life Assessment of High Temperature Components
,
ASME International
, Ohio, pp.
1
20
.
2.
R. B.
Dooley
and
R.
Viswanathan
, editors, 1987, “
Life Extension and Assessment of Fossil Power Plants
,”
Proceedings of Conference in Washington
, ERPICS5208,
Electric Power Research Institute
,
Palo Alto, CA
.
3.
Raj
,
R.
,
Moorthy
,
V.
,
Jayakumar
,
T.
, and
Bhanu Sankara Rao
,
K.
, 2003, “
Assessment of Microstructures and Mechanical Behavior of Metalllic Materials Through Non-Destructive Characterization
,”
Int. Mater. Rev.
0950-6608,
48
, pp.
273
325
.
4.
Drion
,
D. S.
,
Liaw
,
P. K.
,
Rishel
,
R. D.
,
Devine
,
M. K.
, and
Jiles
,
D. C.
, 1992, “
Nondestructive Evaluation of Material Properties in Nuclear Power Plant Industry
,”
PVP-Vol.239∕MPC-Vol.33, Serviceability of Petroleum Process and Power Equipment
,
ASME
, pp.
5
14
.
5.
Dobmann
,
G.
,
Kroning
,
M.
,
Theiner
,
W.
,
Willems
,
H.
, and
Fiedler
,
U.
, 1995, “
Nondestructive Characterization of Materials (Ultrasonic and Micromagnetic Techniques) for Strength and Toughness Prediction and Detection of Early Creep Damage
,”
Nucl. Eng. Des.
0029-5493,
157
, pp.
137
158
.
6.
Auerkari
,
P.
, and
Salonen
,
J.
, 1989, “
Accuracy Requirement for Life Assessment
,”
Int. J. Pressure Vessels Piping
0308-0161,
39
, pp.
135
144
.
7.
Neubauer
,
B.
, and
Wedel
,
U.
, 1983, “
Rest Life Estimation of Creep Components by Means of Replica
,”
In Advances in Life Prediction Methods
, edited by
D. A.
Woodford
and
J. R.
Whitehead
,
ASME
,
New York
, pp.
307
314
.
8.
Delong
,
R. T.
, 1987,
Standard Practice for Prediction and Evaluation of Field Metallographic Replicas
,
ASTM E12-87
, Philadelphia.
9.
Jaske
,
C. E.
,
Simonen
,
F. A.
, and
Roach
,
D. B.
, 1983, “
Predict Reformer Furnace Tube Life
,”
Hydrocarbon Process.
0018-8190,
62
, pp.
63
68
.
10.
Willems
,
H.
,
Bendick
,
W.
, and
Weber
,
H.
1987, “
Nondestructive Evaluation of Creep Damage in Service Exposed 14 MoV 63 Steel
,” in
Nondestructive Characterization of Materials II
, edited by
J. F.
Brussiere
,
J.
Monchalin
,
X.
Rudd
, and
R. E.
Green
, Jr.
,
Plenum
,
New York
, pp.
451
459
.
11.
Ledbetter
,
H. M.
,
Fields
,
R. J.
, and
Datta
,
S. K.
, 1987, “
Creep Cavities in Copper: An Ultrasonic Velocity and Composite Modeling Study
,”
Acta Metall.
0001-6160,
35
, pp.
2393
2398
.
12.
Nakashiro
,
M.
,
Yoneyama
,
H.
, and
Ohtomo
,
A.
, 1987, “
Assessment for Creep Damage of Boiler Tube by Newly Researched Ultrasonic Technique
,” International Conference on Advances in Material Technology for Fossil Power Plants,
ASME International
, Metals Parks, OH, pp.
351
358
.
13.
Kishimoto
,
S.
,
Shinya
,
N.
,
Matsumoto
,
S.
, and
Fukuhara
,
H.
, 1988, “
Evaluation of Creep Cavity by Measurement of Ultrasonic Velocity
,” in
Proceeding of 26th Symposium on Strength of Materials at High Temperature
,
The Society of Materials Science
,
Tokyo
, pp.
11
15
(in Japanese).
14.
Birring
,
A. S.
,
Alcazer
,
D. G.
,
Hanley
,
J. J.
, and
Gehl
,
S.
, 1989, “
Detection of Creep Damage by Ultrasonics
,” in
Review of Progress in Quantitative Non-Destructive Evaluation
, edited by
D. O.
Thompson
and
D. E.
Chimenti
,
Plenum
,
New York
, Vol.
8B
, pp.
1833
1840
.
15.
Hirao
,
M.
,
Morishita
,
T.
, and
Fukuoka
,
H.
, 1990, “
Creep Damage Modeling Based on Ultrasonic Velocities in Copper
,”
Metall. Trans. A
0360-2133,
21A
, pp.
1725
1732
.
16.
Matsubara
,
M.
, and
Nitta
,
A.
, 1993, “
Creep Damage Detection For a Steam Turbine Rotor Material After Long-Term Service Using Ultrasonic Technique
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
A59
, pp.
2061
2068
.
17.
Etienne
,
C. F.
,
Heerings
,
J. H.
,
van Wortel
,
J. C.
,
Dufour
,
L. B.
,
van Dijik
,
G. M.
, and
Fokkenns
,
J. H.
, 1992, “
Dutch Development in Design and Behavior of Creep Loaded Structures
,” in
Proceeding of the 5th International Conference on Creep of Materials
,
ASM International
,
OH
, pp.
453
459
.
18.
Morishita
,
T.
, and
Hirao
,
M.
, 1997, “
Creep Damage Modeling Based on Ultrasonic Velocities in Copper
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
1169
1175
.
19.
Goebbels
,
K.
, 1980, “
Structure Analysis by Scattered Ultrasonic Radiation
,” Res. Tech. in NDT, Vol.
4
, pp.
87
157
.
20.
Hirao
,
M.
,
Ogi
,
H.
, and
Fukuoka
,
H.
, 1993, “
Resonance EMAT System For Acoustoelastic Stress Measurement in Sheet Metals
,”
Rev. Sci. Instrum.
0034-6748,
64
, pp.
3198
3205
.
21.
Hirao
,
M.
, and
Ogi
,
H.
, 1997, “
Electromagnetic Acoustic Resonance and Materials Characterization
,”
Ultrasonics
0041-624X,
35
, pp.
413
421
.
22.
Ohtani
,
T.
,
Ogi
,
H.
, and
Hirao
,
M.
, 1999, “
Advanced EMAT-Resonant Technique For Assessment of Damage Accumulation and Remaining Life of Crept Stainless Steel
,” in
Rev. Prog. in QNDE
, edited by
D. O.
Thompson
and
D. E.
Chimenti
, Vol.
18
, pp.
1847
1854
.
23.
Ohtani
,
T.
,
Ogi
,
H.
, and
Hirao
,
M.
, 2005, “
Acoustic Damping Characterization and Microstructure Evolution of Ni-Based Superalloy During Creep
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
2911
2928
.
24.
Ohtani
,
T.
,
Ogi
,
H.
, and
Hirao
,
M.
, 2005, “
Change of Ultrasonic Attenuation and Microstructure Evolution During Creep of 2.25%Cr-1%Mo Steels
,”
Metall. Mater. Trans. A
1073-5623,
36A
, pp.
411
420
.
25.
Smith
,
G. V.
, 1969, An Evaluation of the Yield, Tensile, Creep and Rupture Strengths of Wrought 304, 316, 321 and 347 Stainless Steels at Elevated Temperatures, ASTM Data Series DS 5S2, ATSM, PA, 1969, pp.
1
82
.
26.
R. D.
Davis
, editor, 1994,
ASM Special Handbook, Stainless Steel
,
ASM International
, OH, pp.
20
32
.
27.
Maxfield
,
B. W.
, and
Fortuko
,
C. M.
, 1983, “
The Design and Use of Electromagnetic Acoustic Wave Transducers (EMATs)
,”
Mater. Eval.
0025-5327,
11
, pp.
1399
1408
.
28.
Wilbrand
,
A.
, 1990, “
Quantitative Modeling and Experimental Analysis of the Physical Properties of Electromagnetic-Ultrasonic Transducer
,” in
Review of Progress in QNDE
, edited by
D. O.
Thompson
and
D. E.
Chimenti
,
Plenum
,
New York
, Vol.
7A
, pp.
671
680
.
29.
Thompson
,
R. B.
, 1990, “
Physical Principle of Measurement With EMAT Transducer
,” in
Physical Acoustics
, edited by
R. N.
Thurston
and
A. D.
Pierce
,
Academic
,
New York
, Vol.
XIX
, pp.
157
181
.
30.
Furtunko
,
C. M.
,
Petersen
,
G. L.
,
Chick
,
B. B.
,
Renken
,
M. C.
, and
Peris
,
A. L.
, 1992, “
Absolute Measurement of Elastic-Wave Phase and Group Velocities in Lossy materials
,”
Rev. Sci. Instrum.
0034-6748,
63
, pp.
3477
3486
.
31.
Ogi
,
H.
,
Hirao
,
M.
, and
Honda
,
T.
, 1995, “
Ultrasonic Attenuation and Grain-Size Evaluation Using Electromagnetic Acoustic Resonance
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
458
464
.
32.
Maruyama
,
K.
,
Harada
,
C.
, and
Oikawa
,
H.
, 1985, “
A Strain-Time Equation Applicable Up to Tertiary Creep Stage
,”
J. Soc. Mater. Sci. Jpn.
0514-5163,
34
, pp.
1289
1295
.
33.
Maruyama
,
K.
, and
Oikawa
,
H.
, 1987, “
An Extrapolation Procedure of Creep Data For St Determination: With Special Reference to Cr-Mo-V Steel
,”
ASME J. Pressure Vessel Technol.
0094-9930,
109
, pp.
142
148
.
34.
Truell
,
R.
,
Elbaum
,
C.
, and
Chick
,
B.
, 1969,
Ultrasonic Methods in Solid State Physics
,
Academic
,
New York
, pp.
159
249
.
35.
Granato
,
A.
, and
Lücke
,
K.
, 1956, “
Theory of Mechanical Damping Due to Dislocations
J. Appl. Phys.
0021-8979,
27
, pp.
583
593
.
36.
Pahutova
,
M.
, and
Cadek
,
J.
, 1984, “
Transients in the Creep of a 16Cr-12Ni-2.5Mo Austenitic Steel II: Structure
,”
Mater. Sci. Eng.
0025-5416,
62
, pp.
33
40
.
37.
Hirao
,
M.
,
Ogi
,
H.
,
Suzuki
,
N.
, and
Ohtani
,
T.
, 2000, “
Ultrasonic Attenuation Peak During Fatigue of Polycrystalline Copper
,”
Acta Mater.
1359-6454,
48
, pp.
517
524
.
38.
Ohtani
,
T.
,
Ogi
,
H.
, and
Hirao
,
M.
, 2000, “
Ultrasonic Attenuation Monitoring of Fatigue Damage in Low Carbon Steels With Electromagnetic Acoustic Resonance
,”
J. Alloys Compd.
0925-8388,
310
, pp.
440
444
.
39.
Ogi
,
H.
,
Minami
,
Y.
, and
Hirao
,
M.
, 2002, “
Acoustic Study of Dislocation Rearrangement at Later Stages of Fatigue: Noncontact Prediction of Remaining Life
,”
J. Appl. Phys.
0021-8979,
91
, pp.
1849
1854
.
40.
Keh
,
A. S.
, and
Weissmann
,
S.
, 1963, “
Deformation Substructure in Body-Centered Cubic Metals
,” in
Electron Microscopy and Strength of Crystals
, edited by
G.
Thomas
and
J.
Washburn
,
Interscience
,
New York
, pp.
231
299
.
41.
Barrett
,
C. R.
,
Nix
,
W. D.
, and
Sherby
,
O. D.
, 1966, “
The Influence of Strain and Grain Size on the Creep Substructure of Fe-3Si
,”
Trans. ASME
0097-6822,
59
, pp.
3
15
.
42.
Orlova
,
A.
, and
Cadek
,
J.
, 1973, “
Some Substructure Aspects of High-Temperature Creep in Metals
,”
Philos. Mag.
0031-8086,
28
, pp.
891
899
.
43.
Hasegawa
,
T.
,
Ikeuchi
,
Y.
, and
Karashima
,
S.
, 1972, “
Internal Stress and Dislocation Structure During Sigmoidal Transient Creep of a Copper-16at.‐% Aluminum Alloy
,”
Met. Sci. J.
0026-0681,
6
, pp.
78
82
.
44.
Sikka
,
V. L.
,
Nahm
,
H.
, and
Moteff
,
J.
, 1975, “
Some Aspects of Sub-boundary and Mobile Dislocations During High Temperature Creep of AISI 316 and 304 Stainless Steels
,”
Mater. Sci. Eng.
0025-5416,
20
, pp.
55
62
.
45.
Takeuchi
,
S.
, and
Argon
,
A. S.
, 1976, “
Review Steady-State Creep of Single-Phase Crystalline Matter at High Temperature
,”
J. Mater. Sci.
0022-2461,
11
, pp.
1542
1566
.
46.
Okazaki
,
K.
,
Hashimoto
,
M.
, and
Sada
,
T.
, 1992, “
An Approach on Nondestructive Detection of Creep Damage in SUS316 Steel Through Ultrasonic Attenuation Properties
,”
J. Soc. Mater. Sci. Jpn.
0514-5163,
41
, pp.
1729
1735
.
47.
Cadek
,
J.
, 1988,
Creep in Metallic Materials
,
Elservier
,
Amsterdam
, pp.
95
114
.
48.
Nabarro
,
F. R. N.
, and
de Villier
,
H. L.
, 1995,
The Physics of Creep: Creep and Creep-resistant Alloys
,
Taylor & Francis
,
London
, pp.
15
43
.
You do not currently have access to this content.