The paper focuses on optimization of lightweight sandwich panels with prismatic cores subject to bending loads in the two principal in-plane directions. Comparisons are made with optimal designs of panels with corrugated cores: a limiting case. When optimized for loading transverse to the prism axis, prismatic panels outperform those with corrugated cores, especially at lower loads. In contrast, when optimized for longitudinal loading, the corrugated core panel is always superior. Both panels exhibit significant anisotropy: a deficiency mediated by optimizing jointly for both orientations. The designs emerging from joint optimizations have only slightly lower load capacity than those optimized singly, but with the benefit of equal strengths in the two principal directions. Moreover, jointly optimized corrugated and prismatic panels perform equally well. Both are competitive with honeycomb core panels, especially at high load capacities. With the additional potential for multifunctionality (notably active cooling), the corrugated panels appear to be particularly promising thermostructural elements.

1.
Valdevit
,
L.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 2004, “
Structurally Optimized Sandwich Panels with Prismatic Cores
,”
Int. J. Solids Struct.
0020-7683,
41
(
18–19
), pp.
5105
5124
.
2.
Lu
,
T. J.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 2001, “
Optimal Design of a Flexural Actuator
,”
J. Mech. Phys. Solids
0022-5096,
49
(
9
), pp.
2071
2093
.
3.
Valdevit
,
L.
,
Pantano
,
A.
,
Stone
,
H. A.
, and
Evans
,
A. G.
, 2005, “
Optimal Active Cooling Performance of Metallic Sandwich Panels with Prismatic Cores
,” Int. J. Heat Mass Transfer (in press).
4.
Lu
,
T. J.
,
Valdevit
,
L.
, and
Evans
,
A. G.
, 2005, “
Active Cooling by Metallic Sandwich Structures with Periodic Cores
,”
Prog. Mater. Sci.
0079-6425, in press.
5.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
, 2001, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
0079-6425,
46
, pp.
309
327
.
6.
Wicks
,
N.
, and
Hutchinson
,
J. W.
, 2001, “
Optimal Truss Plates
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
5165
5183
.
7.
Wicks
,
N.
, and
Hutchinson
,
J. W.
, 2004, “
Performance of Sandwich Plates with Truss Cores
,”
Mech. Mater.
0167-6636,
36
(
8
), pp.
739
751
.
8.
Zok
,
F. W.
,
Rathbun
,
H. J.
,
He
,
M.
,
Ferri
,
E.
,
Mercer
,
C.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2005, “
Structural Performance of Metallic Sandwich Panels with Square Honeycomb Cores
,”
Philos. Mag.
1478-6435, in press.
9.
Rathbun
,
H. J.
,
Wei
,
Z.
,
Zok
,
F. W.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2005, “
Analysis and Design of Sandwich Panels with Square Honeycomb Cores
,” in preparation.
10.
Cote
,
F.
,
Deshpande
,
V.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
, 2004, “
The Out-of-Plane Compressive Behavior of Metallic Honeycombs
,”
Mater. Sci. Eng., A
0921-5093,
380
(
1–2
), pp.
272
280
.
11.
Cote
,
F.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
, 2005, “
The Compressive and Shear Responses of Corrugated and Prismatic Diamond Lattice Materials
,” Int. J. Solids Structures (submitted).
12.
Valdevit
,
L.
,
Wei
,
Z.
,
Mercer
,
C.
,
Zok
,
F. W.
, and
Evans
,
A. G.
, 2005, “
Structural Performance of Near-Optimal Sandwich Panels with Corrugated Cores
,” Int. J. Solids Structures (submitted).
13.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
, 2000, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, MA.
14.
Rathbun
,
H. J.
,
Zok
,
F. W.
, and
Evans
,
A. G.
, 2005, “
Strength Optimization of Metallic Sandwich Panels Subject to Bending
,”
Int. J. Solids Struct.
0020-7683, in press.
You do not currently have access to this content.