A thermo-elastic-plastic finite element modeling of orthogonal cutting with a large negative rake angle has been developed to understand the mechanism and thermal aspects of grinding. A stagnant chip material ahead of the tool tip, which is always observed with large negative rake angles, is assumed to act like a stable built-up edge. Serrated chips, one of typical shapes of chips observed in single grain grinding experiment, form when analyzing the machining of 0.93%C carbon steel SK-5 with a rake angle of minus forty five or minus sixty degrees. There appear high and low temperature zones alternately according to severe and mild shear in the primary shear zone respectively. The shapes of chips depend strongly on the cutting speed and undeformed chip thickness; as the cutting speed or the undeformed chip thickness decreases, chip shape changes from a serrated type to a bulging one to a wavy or flow type. Therefore, there exists the critical cutting speed over which a chip can form and flow along a rake face for a given large negative rake angle and undeformed chip thickness.

1.
Rowe
,
G. W.
, and
Wetton
,
A. G.
,
1969
, “
Theoretical Considerations in the Grinding of Metals
,”
J. Inst. Met.
,
97
, pp.
193
200
.
2.
Abebe
,
M.
, and
Appl
,
F. C.
,
1988
, “
Theoretical Analysis of the Basic Mechanics of Abrasive Processes (Part 1)
,”
Wear
,
126
, pp.
251
266
.
3.
Matsuo
,
T.
,
Toyoura
,
S.
,
Oshima
,
E.
, and
Ohbuchi
,
Y.
,
1989
, “
Effect of Grain Shape on Cutting Force on Superabrasive Single-Grit Tests
,”
CIRP Ann.
,
38
(
1
), pp.
323
326
.
4.
Komanduri
,
R.
,
1971
, “
Some Aspects of Machining with Negative Rake Tools Simulating Grinding
,”
Int. J. Mach. Tool Des. Res.
,
11
, pp.
223
233
.
5.
Malkin
,
S.
,
1979
, “
Negative Rake Cutting to Simulate Chip Formation in Grinding
,”
CIRP Ann.
,
28
(
1
), pp.
209
212
.
6.
Ohbuchi
,
Y.
, and
Matsuo
,
T.
,
1991
, “
Force and Chip Formation in Single-Grit Orthogonal Cutting with Shaped CBN and Diamond Grains
,”
CIRP Ann.
,
40
(
1
), pp.
327
380
.
7.
Usui, E., and Shirakashi, T., 1982, “Mechanics of Machining-From Descriptive to Predictive Theory,” ASME, PED-7, pp. 13–35.
8.
Iwata
,
K.
,
Osakada
,
K.
, and
Terasaka
,
Y.
,
1984
, “
Process Modeling of Orthogonal Cutting by the Rigid-Plastic Finite Element Method
,”
ASME J. Eng. Mater. Technol.
,
106
, pp.
132
138
.
9.
Strenkowski
,
J. S.
, and
Carroll
, III,
J. T.
,
1985
, “
A Finite Element Model of Orthogonal Metal Cutting
,”
ASME J. Ind.
,
107
, pp.
349
354
.
10.
Lin
,
Z. C.
, and
Lin
,
S. Y.
,
1992
, “
A Coupled Finite Element Model of Thermo-Elastic-Plastic Large Deformation for Orthogonal Cutting
,”
ASME J. Eng. Mater. Technol.
,
114
, pp.
218
226
.
11.
Shih
,
A. J.
, and
Yang
,
H. T. Y.
,
1993
, “
Experimental and Finite Element Predictions of Residual Stress due to Orthogonal Metal Cutting
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
1487
1507
.
12.
Shih
,
A. J.
,
1996
, “
Finite Element Analysis of the Rake Angle Effects in Orthogonal Metal Cutting
,”
Int. J. Mech. Sci.
,
38
, pp.
1
17
.
13.
Dirikolu
,
M. H.
,
Childs
,
T. H. C.
, and
Maekawa
,
K.
,
2001
, “
Finite Element Simulation of Chip Flow in Metal Machining
,”
Int. J. Mech. Sci.
,
43
, pp.
2699
2713
.
14.
Marusich
,
T. D.
, and
Ortiz
,
M.
,
1995
, “
Modeling and Simulation of High-Speed Machining
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
3675
3694
.
15.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy-Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
208
215
.
16.
Obikawa
,
T.
,
Sasahara
,
H.
,
Shirakashi
,
T.
, and
Usui
,
E.
,
1997
, “
Application of Computational Machining Method to Discontinuous Chip Formation
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
667
674
.
17.
Ueda
,
N.
, and
Matsuo
,
T.
,
1982
, “
An Analysis of Saw-Toothed Chip Formation
,”
CIRP Ann.
,
31
(
1
), pp.
81
84
.
18.
Kita
,
Y.
,
Ido
,
M.
, and
Hata
,
S.
,
1978
, “
The Mechanism of Metal Removal by an Abrasive Tool
,”
Wear
,
47
, pp.
185
193
.
19.
Kita
,
Y.
,
Ido
,
M.
, and
Tsuji
,
Y.
,
1981
, “
The Influence of the Cutting Speed on the Mechanism of Metal Removal by an Abrasive Tool
,”
Wear
,
71
, pp.
55
63
.
20.
Kita
,
Y.
,
Ido
,
M.
, and
Kawasaki
,
N.
,
1982
, “
A Study of Metal Flow Ahead of Tool Face With Large Negative Rake Angle
,”
ASME J. Eng. Ind.
,
104
, pp.
319
325
.
21.
Nagtegaal
,
J. C.
,
Parks
,
D. M.
, and
Rice
,
J. R.
,
1974
, “
On Numerically Accurate Finite Element Solutions in the Fully Plastic Range
,”
Comput. Methods Appl. Mech. Eng.
,
4
, pp.
153
177
.
22.
Yoshino
,
M.
, and
Shirakashi
,
T.
,
1997
, “
Flow-Stress Equation Including Effects of Strain-Rate and Temperature History
,”
Int. J. Mech. Sci.
,
39
, pp.
1345
1362
.
23.
Horie, T., 1993, “Finite Element Analysis of Mechanical and Thermal Damage in the Ground Surface Layer,” Master Thesis, Tokyo Institute of Technology, pp. 44–46.
24.
Yoshino, M., Shirakashi, T., and Obikawa, T., 1994, “Numerical Analysis of Residual Stress in a Ground Surface Layer,” Proceedings of the Seventh International Conference on Production/Precision Engineering, Sept. 15–17, 1994, Usui, E., ed., 1, Elsevier Sci., Tokyo, pp. 497–502.
25.
Shirakashi
,
T.
,
Yoshino
,
M.
,
Obikawa
,
T.
, and
Horie
,
T.
,
1994
, “
Simulative Analysis of Effects of Flow Stress Characteristic on Ground Surface Layer Properties
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
60
(
577
), pp.
2946
2951
.
26.
Recht
,
R. F.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
, pp.
189
193
.
You do not currently have access to this content.