The goal of this paper is to derive a micromechanics framework to study the kinetics of transformation due to interface migration in elastic-plastic materials. Both coherent and incoherent interfaces as well as interstitial and substitutional atomic diffusion are considered, and diffusional transformations are contrasted with martensitic ones. Assuming the same dissipation for the rearrangement of all substitutional components and no dissipation due to diffusion in an interface in the case of a multicomponent diffusional transformation, we show that the chemical driving force of the interface motion is represented by the jump in the chemical potential of the lattice forming constituent. Next, the mechanical driving force is shown to have the same form for both coherent and frictionless (sliding) interfaces in an elastic-plastic material. Using micromechanics arguments we show that the dissipation and consequently the average mechanical driving force at the interface due to transformation in a microregion can be estimated in terms of the bulk fields. By combining the chemical and mechanical parts, we obtain the kinetic equation for the volume fraction of the transformed phase due to a multicomponent diffusional transformation. Finally, the communication between individual microregions and the macroscale is expressed by proper parameters and initial as well as boundary conditions. This concept can be implemented into standard frameworks of computational mechanics.

1.
Kostorz, G., 2001, Phase Transformations in Materials, Wiley-VCH, New York.
2.
Fischer, F. D., 2001, “Elastoplasticity Coupled With Phase Changes,” Handbook of Materials Behavior Models, J. Lemaitre, ed., Academic Press, San Diego, USA, pp. 905–914, Chap. 9.13.
3.
Gamsja¨ger
,
E.
,
Chimani
,
C. M.
,
Fischer
,
F. D.
, and
Svoboda
,
J.
,
2001
, “
Diffusional Phase Diffusional Phase Transformation in Steel—Theory and Application to Continuous Casting
,”
J. Phys. IV France
,
11
,
4
-
149
.
4.
Hillert
,
M.
,
1975
, “
Diffusion and Interface Control of Reactions in Alloys
,”
Metall. Trans. A
,
6
, pp.
5
19
.
5.
Svoboda
,
J.
,
Fischer
,
F. D.
, and
Gamsja¨ger
,
E.
,
2002
, “
Influence of Solute Segregation and Drag on Properties of Migrating Interfaces
,”
Acta Mater.
,
50
, pp.
967
977
.
6.
Svoboda
,
J.
,
Fischer
,
F. D.
,
Fratzl
,
P.
, and
Kroupa
,
A.
,
2002
, “
Diffusion in Multi-Component Systems With No or Dense Sources and Sinks for Vacancies
,”
Acta Mater.
,
50
, pp.
1369
1381
.
7.
Petri
,
M. C.
, and
Dayananda
,
M. A.
,
1997
, “
Vacancy Wind Contributions to Intrinsic Diffusion
,”
Philos. Mag. A
,
76
, pp.
1169
1185
.
8.
Svoboda, J., Fischer, F. D., and Gamsja¨ger, E., 2003, “Application of the Thermo-Dynamic Extremal Principle to the Diffusional Phase Transformation,” Acta Mater., in press.
9.
Kozeschnik, E., and Buchmayr, B., 2001, “Matcalc—A Simulation Tool for Multicomponent Thermodynamics, Diffusion and Phase Transformations,” in Mathematical Modelling of Weld Phenomena 5, H. Cerjak, edt., IOM Communications Ltd, London, Book 738, pp. 349–361.
10.
Hillert
,
M.
,
1999
, “
Solute Drag, Solute Trapping and Diffusional Dissipation of Gibbs Energy
,”
Acta Mater.
,
47
, pp.
4481
4505
.
11.
Mullins
,
W. W.
, and
Sekerka
,
R. F.
,
1985
, “
On the Thermodynamics of Crystalline Solids
,”
J. Chem. Phys.
,
82
, pp.
5192
5202
.
12.
Ghosh
,
G.
, and
Olson
,
G. B.
,
2001
, “
Simulation of Paraequilibrium Growth in Multicomponent Systems
,”
Metall. Trans. A
,
32A
, pp.
455
467
.
13.
Fischer
,
F. D.
,
Sun
,
Q.-P.
, and
Tanaka
,
K.
,
1996
, “
Transformation-Induced Plasticity (TRIP)
,”
Appl. Mech. Rev.
,
49
, pp.
317
364
.
14.
Berveiller, M., and Fischer, F. D., 1997, Mechanics of Solids With Phase Changes, CISM Courses and Lectures No. 368, Springer-Verlag, New York, p. 317.
15.
Gurtin
,
M. E.
,
1991
, “
On the Thermomechanical Laws for the Motion of a Phase Interface
,”
J. Appl. Math. Phys. (ZAMP)
,
42
, pp.
370
388
.
16.
Gurtin
,
M. E.
, and
Voorhees
,
P.
,
1993
, “
The Continuum Mechanics of Coherent Two-Phase Elastic Solids With Mass Transport
,”
Proc. R. Soc. London, Ser. A
,
440
, pp.
323
343
.
17.
Fried
,
E.
, and
Gurtin
,
M. E.
,
1999
, “
Coherent Solid-State Phase Transitions With Atomic Diffusion: A Thermomechanical Treatment
,”
J. Stat. Phys.
,
95
, pp.
1361
1427
.
18.
Levitas
,
V. I.
,
2000
, “
Thermomechanical and Kinetic Approaches to Diffusional—Displacive Phase Transitions in Inelastic Materials
,”
Mech. Res. Commun.
,
27
, pp.
217
227
.
19.
Levitas
,
V. I.
,
2000
, “
Structural Changes Without Stable Intermediate State in Inelastic Material. Part I. General Thermomechanical and Kinetic Approaches, and Part II. Applications to Displacive and Diffusional-Displacive Phase Transformations, Strain-Induced Chemical Reactions and Ductile Fracture
,”
Int. J. Plast.
,
16
, pp.
805
849
, 851–892.
20.
Lufrano
,
J.
,
Sofranis
,
P.
, and
Birnbaum
,
M. K.
,
1998
, “
Elastoplastically Accommodated Hydride Formation and Embrittlement
,”
J. Mech. Phys. Solids
,
46
, pp.
1497
1520
.
21.
Fratzl
,
P.
,
Penrose
,
O.
, and
Lebowitz
,
J. L.
,
1999
, “
Modeling of Phase Separation in Alloys With Coherent Elastic Misfit
,”
J. Stat. Phys.
,
95
, pp.
1429
1503
.
22.
Fischer
,
F. D.
, and
Reisner
,
G.
,
1998
, “
A Criterion for the Martensitic Transformation of a Microregion in an Elastic-Plastic Material
,”
Acta Mater.
,
46
, pp.
2095
2102
.
23.
Simha
,
N. K.
, and
Bhattacharya
,
K.
,
1998
, “
Kinetics of Phase Boundaries With Edges and Junctions
,”
J. Mech. Phys. Solids
,
46
, pp.
2323
2359
.
24.
Levitas
,
V. I.
,
1998
, “
Thermomechanical Theory of Martensitic Phase Transformations in Inelastic Materials
,”
Int. J. Solids Struct.
,
35
, pp.
889
940
.
25.
Gurtin
,
M. E.
, and
Jabbour
,
M. E.
,
2002
, “
Interface Evolution in Three Dimensions With Curvature-Dependent Energy and Surface Diffusion: Interface-Controlled Evolution, Phase Transitions, Epitaxial Growth of Elastic Films
,”
Arch. Ration. Mech. Anal.
,
163
, pp.
171
208
.
26.
Svoboda
,
J.
,
Fischer
,
F. D.
,
Fratzl
,
P.
,
Gamsja¨ger
,
E.
, and
Simha
,
N. K.
,
2001
, “
Kinetics of Interfaces During Diffusional Transformations
,”
Acta Mater.
,
49
, pp.
1249
1259
.
27.
Fischer
,
F. D.
, and
Oberaigner
,
E. R.
,
2000
, “
Deformation, Stress State and Thermodynamic Force for a Transforming Spherical Inclusion in an Elastic-Plastic Material
,”
ASME J. Appl. Mech.
,
67
, pp.
793
796
.
28.
Fischer
,
F. D.
, and
Oberaigner
,
E. R.
,
2001
, “
A Micromechanical Model of Interphase Boundary Movement During Solid-Solid Phase Transformations
,”
Arch. Appl. Mech.
,
71
, pp.
193
205
.
29.
Lehner, F. K., 1990, “Thermodynamics of Rock Deformation by Pressure Solution,” in Deformation Processes in Minerals, Ceramics and Rocks, D. J. Barber and P. G. Meredith, eds., Unwin Hyman, London et al., pp. 296–333, Chpt. 11.
30.
Gurtin
,
M. E.
,
1993
, “
The Dynamics of Solid-Solid Phase Transitions—1: Coherent Interfaces
,”
Arch. Ration. Mech. Anal.
,
123
, pp.
305
335
.
31.
Cermelli
,
P.
, and
Gurtin
,
M. E.
,
1994
, “
The Dynamics of Solid-Solid Phase Transitions—2: Incoherent Interfaces
,”
Arch. Ration. Mech. Anal.
,
127
, pp.
41
99
.
32.
Morland
,
L. W.
, and
Gray
,
J. M. N. T.
,
1995
, “
Phase Change Interactions and Singular Fronts
,”
Continuum Mech. Thermodyn.
,
7
, pp.
387
414
.
33.
Cocks, A. C. F., Gill, S. P. A., and Pan, J., 1999, “Modeling Microstructure Evolution in Engineering Materials,” in Advances in Applied Mechanics, E. V. D. Giessen and T. Y. Wu, eds., 36, pp. 81–162.
34.
Maugin, G. A., 1999, “Waves and Reaction-Diffusion Systems,” in The Thermomechanics of Nonlinear Irreversible Behaviors, World Scientific, Singapore et al., pp. 295–323, Chpt. 10.
35.
Grinfeld, M., 1991, Thermodynamic Methods in the Theory of Heterogeneous Systems, Longman Scientific & Technical, Harlow.
You do not currently have access to this content.