A multiple slip dislocation-density based crystalline formulation has been coupled to a kinematically based scheme that accounts for grain-boundary (GB) interfacial interactions with dislocation densities. Specialized finite-element formulations have been used to gain detailed understanding of the initiation and evolution of large inelastic deformation modes due to mechanisms that can result from dislocation-density pile-ups at GB interfaces, partial and total dislocation-density transmission from one grain to neighboring grains, and dislocation density absorption within GBs. These formulations provide a methodology that can be used to understand how interactions at the GB interface scale affect overall macroscopic behavior at different inelastic stages of deformation for polycrystalline aggregates due to the interrelated effects of GB orientations, the evolution of mobile and immobile dislocation-densities, slip system orientation, strain hardening, geometrical softening, geometric slip compatibility, and localized plastic strains. Criteria have been developed to identify and monitor the initiation and evolution of multiple regions where dislocation pile-ups at GBs, or partial and total dislocation density transmission through the GB, or absorption within the GB can occur. It is shown that the accurate prediction of these mechanisms is essential to understanding how interactions at GB interfaces affect and control overall material behavior.

1.
Dingley
,
D. J.
, and
Pond
,
R. C.
,
1979
, “
On the Interaction of Crystal Dislocation with Grain Boundaries
,”
Acta Metall.
,
27
, pp.
667
682
.
2.
Baker, I., and Liu, F., 1994 “On In-Situ Study of Dislocation/Grain Boundary Interactions Using X-Ray Topography and TEM,” Materials Research Society Symposia Proceedings, 319, 203–214.
3.
Randle
,
V.
,
1997
, “
The Role of the Grain Boundary Plane in Cubic Polycrystals
,”
Acta Mater.
,
46
, No.
5
, pp.
1459
1480
.
4.
Watanabe
,
T.
,
1989
, “
Grain Boundary Design for the Control of Intergranular Fracture
,”
Journal of Materials Science Forum
,
46
, pp.
25
48
.
5.
Kameda
,
T.
, and
Zikry
,
M. A.
,
1998
, “
Three Dimensional Dislocation-Based Crystalline Constitutive Formulation for ordered Intermetallics
,”
Scr. Metall. Mater.
,
38
, No.
4
, pp.
631
636
.
6.
Zikry
,
M. A.
, and
Kao
,
M.
,
1996
, “
Inelastic Microstructural Failure Mechanisms in Crystalline Materials with High Angle Grain Boundaries
,”
J. Mech. Phys. Solids
,
44
, No.
11
, pp.
1765
1798
.
7.
Mughrabi
,
H.
,
1987
, “
A Two Parameter Description of Heterogeneous Dislocation Distributions in Deformed Metal Crystals
,”
Mater. Sci. Eng.
,
85
, pp.
15
31
.
8.
Gottstein
,
G.
, and
Argon
,
A. S.
,
1987
, “
Dislocation Theory of Steady State Deformation and Its Approach in Creep and Dynamic Tests
,”
Acta Metall.
,
35
, pp.
1261
1271
.
9.
Mecking
,
H.
, and
Kocks
,
U. F.
,
1981
, “
Kinetics of Flow and Strain-Hardening
,”
Acta Metall.
,
29
, pp.
1865
1875
.
10.
Walgraef
,
D.
, and
Aifantis
,
E. C.
,
1985
, “
Dislocation patterning in fatigued metals as a result of dynamical instabilities
,”
J. Appl. Phys.
,
58
, pp.
688
691
.
11.
Kubin
,
L. P.
, and
Estrin
,
Y.
,
1988
, “
Strain Nonuniformities and Plastic Instabilities
,”
Revue De Physique Appliquee
,
23
, pp.
573
583
.
12.
Hansen
,
N.
,
1990
, “
Cold Deformation Microstructures
,”
Mater. Sci. Technol.
,
6
, pp.
1039
1047
.
13.
Bay
,
B.
,
Hansen
,
N.
,
Hughes
,
D. A.
, and
Kuhlmann-Wilsdorf
,
D.
,
1992
, “
Evolution of F.C.C. Deformation Structures in Polyslip
,”
Acta Metall. Mater.
,
40
, pp.
205
219
.
14.
Baker
,
I.
,
Schulson
,
E. M.
, and
Horton
,
J. A.
,
1987
, “
Insitu Straining of Ni3Al in a Transmission Electron-Microscope
,”
Acta Metall.
,
35
, pp.
1533
1541
.
15.
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
,
1992
, “
Interaction of Dislocation with Grain Boundaries in Ni3Al,
Acta Metall. Mater.
,
40
, p.
2569
2569
.
16.
Shen
,
Z.
,
Wagoner
,
R. H.
, and
Clark
,
W. A. T.
,
1987
, “
Dislocation and Grain Boundary Interactions in Metals
,”
Acta Metall.
,
36
, No.
12
, pp.
3231
3242
.
17.
Werner
,
E.
, and
Prantl
,
W.
,
1990
, “
Slip Transfer Across Grain and Phase Boundaries
,”
Acta Metall. Mater.
,
38
, No.
3
, pp.
533
537
.
18.
Davis
,
K. G.
,
Teghtsoonian
,
E.
, and
Lu
,
A.
,
1966
, “
Slip Band Continuity Across Grain Boundaries in Aluminum
,”
Acta Metall.
,
14
, pp.
1677
1684
.
19.
Zikry
,
M. A.
,
1994
, “
An Accurate and Stable Algorithm for High Strain-Rate Finite Strain Plasticity
,”
Comput. Struct.
,
50
, pp.
337
350
.
20.
Zikry
,
M. A.
,
1994a
, “
Dynamic Void Collapse and Material Failure Mechanisms in Metallic Crystals
,”
Comput. Struct.
,
17
, pp.
273
288
.
21.
Ashmawi
,
W. M.
, and
Zikry
,
M. A.
,
2000
, “
Effects of Grain Boundaries and Dislocation Density Evolution on Large Strain Deformation Modes in fcc Crystalline Materials
,”
J. Comput.-Aided Mater. Des.
,
7
, pp.
55
62
.
22.
Garbacz
,
A.
, and
Grabski
,
M. W.
,
1993
, “
The Relationship between Texture and CSL Boundaries Distribution in Polycrystalline Materials--II. Analysis of The Relationship between Texture and Coincidence Grain Boundary Distribution
,”
Acta Metall. Mater.
,
41
, No.
2
, pp.
475
483
.
You do not currently have access to this content.