Abstract

In the milling of flexible workpieces, like thin-wall blades, cutting force-induced deformation and vibration are great adverse issues that are almost inevitable. Semifinish–finish (SF) hybrid milling is a promising strategy to obtain a high accuracy and quality surface, which separates the object blade into several layers in the radial direction of the blisk, and then for each layer, from blade tip to root, using SF hybrid milling as a cycle to finish the current layer, and then move to the next layer. However, two extra contradictions are introduced in process planning: (1) considering the number of layers: To decrease the machining deformation error, we should increase the number of layers, which however increases the time consumption as well as the number of tool marks because of frequent tool path switching between semifinish and finish; (2) as to the allowance of semifinish: To decrease the machining deformation error, we should increase the allowance in semifinish to enhance stiffness, which however increases tool wear since more material needs to be removed by the tool. To balance the contradictions, this article constructs a framework for parameters planning in SF hybrid milling, in which the allowance, number of layers, as well as lengths of each layer are optimized so that we are able to control the deformation error while maintaining high cutting efficiency. The method is verified by simulation and validation experiments. Compared with traditional nonlayering and uniform layering machining, the maximum deformation error by optimized layering machining is reduced by 76.4% and 48.6%, respectively.

References

1.
Cao
,
L.
,
Zhang
,
X.-M.
,
Huang
,
T.
, and
Ding
,
H.
,
2019
, “
Online Monitoring Machining Errors of Thin-Walled Workpiece: A Knowledge Embedded Sparse Bayesian Regression Approach
,”
IEEE/ASME Trans. Mechatron.
,
24
(
3
), pp.
1259
1270
.
2.
Shi
,
D.-M.
,
Huang
,
T.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2022
, “
An Explicit Coupling Model for Accurate Prediction of Force-Induced Deflection in Thin-Walled Workpiece Milling
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081005
.
3.
Liu
,
H.
,
Zeng
,
L.
,
Wang
,
C.
,
Han
,
L.
,
Li
,
P.
, and
Wang
,
Y.
,
2024
, “
Force-Induced Deformation Mechanism for Cylindrical Shell Thin-Walled Parts Milling With Ice Supporting: Modelling and Prediction
,”
ASME J. Manuf. Sci. Eng.
,
146
(
4
), p.
041002
.
4.
Cao
,
Z.
,
Huang
,
T.
,
Zhang
,
H.
,
Wu
,
B.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2024
, “
A Deep Learning Model for Online Prediction of In-Process Dynamic Characteristics of Thin-Walled Complex Blade Machining
,”
J. Intell. Manuf.
, pp.
1
27
.
5.
Ma
,
S.-L.
,
Huang
,
T.
,
Yan
,
Y.
,
Zhang
,
X.-M.
,
Ding
,
H.
, and
Wiercigroch
,
M.
,
2024
, “
Bifurcation Analysis of Thin-Walled Structures Trimming Process With State-Dependent Time Delay
,”
Int. J. Mech. Sci.
,
271
, p.
109159
.
6.
Munoa
,
J.
,
Sanz-Calle
,
M.
,
Dombovari
,
Z.
,
Iglesias
,
A.
,
Pena-Barrio
,
J.
, and
Stepan
,
G.
,
2020
, “
Tuneable Clamping Table for Chatter Avoidance in Thin-Walled Part Milling
,”
CIRP Ann.
,
69
(
1
), pp.
313
316
.
7.
Aurrekoetxea
,
M.
,
Llanos
,
I.
,
Zelaieta
,
O.
, and
Lopez de Lacalle
,
L. N.
,
2021
, “
Improving Accuracy of Bulk Residual Stress Characterization in Ribbed Geometries Through Equivalent Bending Stiffness
,”
Procedia CIRP
,
102
, pp.
325
330
.
8.
Cao
,
Z.
,
Xu
,
W.
,
Huang
,
T.
,
Lv
,
Y.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2024
, “
An Efficient Surrogate Model for Prediction of Stress Released Distortion in Large Blade Machining
,”
J. Manuf. Process.
,
132
, pp.
544
557
.
9.
Morelli
,
L.
,
Grossi
,
N.
,
Campatelli
,
G.
, and
Scippa
,
A.
,
2022
, “
Surface Location Error Prediction in 2.5-Axis Peripheral Milling Considering Tool Dynamic Stiffness Variation
,”
Precis. Eng.
,
76
, pp.
95
109
.
10.
Wang
,
R.
,
Zhang
,
S.
,
Ullah
,
I.
, and
Wiercigroch
,
M.
,
2024
, “
Quasistatic Deflection Analysis of Slender Ball-End Milling Cutter
,”
Int. J. Mech. Sci.
,
264
, p.
108807
.
11.
Altintas
,
Y.
,
Kersting
,
P.
,
Biermann
,
D.
,
Budak
,
E.
,
Denkena
,
B.
, and
Lazoglu
,
I.
,
2014
, “
Virtual Process Systems for Part Machining Operations
,”
CIRP Ann.
,
63
(
2
), pp.
585
605
.
12.
Altintas
,
Y.
,
Tuysuz
,
O.
,
Habibi
,
M.
, and
Li
,
Z.
,
2018
, “
Virtual Compensation of Deflection Errors in Ball End Milling of Flexible Blades
,”
CIRP Ann.
,
67
(
1
), pp.
365
368
.
13.
Li
,
Z.-L.
,
Tuysuz
,
O.
,
Zhu
,
L.-M.
, and
Altintas
,
Y.
,
2018
, “
Surface Form Error Prediction in Five-Axis Flank Milling of Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
128
, pp.
21
32
.
14.
Khandagale
,
P.
,
Bhakar
,
G.
,
Kartik
,
V.
, and
Joshi
,
S. S.
,
2018
, “
Modelling Time-Domain Vibratory Deflection Response of Thin-Walled Cantilever Workpieces During Flank Milling
,”
J. Manuf. Process.
,
33
, pp.
278
290
.
15.
Du
,
C.
,
Zhang
,
J.
,
Lu
,
D.
,
Zhang
,
H.
, and
Zhao
,
W.
,
2018
, “
Coupled Model of Rotary-Tilting Spindle Head for Pose-Dependent Prediction of Dynamics
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081008
.
16.
Manikandan
,
H.
, and
Bera
,
T. C.
,
2021
, “
Modelling of Dimensional and Geometric Error Prediction in Turning of Thin-Walled Components
,”
Precis. Eng.
,
72
, pp.
382
396
.
17.
Wang
,
X.
,
Li
,
Z.
,
Bi
,
Q.
,
Zhu
,
L.
, and
Ding
,
H.
,
2019
, “
An Accelerated Convergence Approach for Real-Time Deformation Compensation in Large Thin-Walled Parts Machining
,”
Int. J. Mach. Tools Manuf.
,
142
, pp.
98
106
.
18.
Li
,
W.
,
Wang
,
L.
, and
Yu
,
G.
,
2021
, “
Force-Induced Deformation Prediction and Flexible Error Compensation Strategy in Flank Milling of Thin-Walled Parts
,”
J. Mater. Process. Technol.
,
297
, p.
117258
.
19.
Habibi
,
M.
,
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031004
.
20.
Zhao
,
X.
,
Zheng
,
L.
, and
Zhang
,
Y.
,
2022
, “
Online First-Order Machining Error Compensation for Thin-Walled Parts Considering Time-Varying Cutting Condition
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
021006
.
21.
Hou
,
Y.
,
Zhang
,
D.
,
Mei
,
J.
,
Zhang
,
Y.
, and
Luo
,
M.
,
2019
, “
Geometric Modelling of Thin-Walled Blade Based on Compensation Method of Machining Error and Design Intent
,”
J. Manuf. Process.
,
44
, pp.
327
336
.
22.
Abed
,
M.
,
Gameros
,
A.
,
Mohammad
,
A.
, and
Axinte
,
D.
,
2023
, “
Swift Feedback and Immediate Error Control Using a Lightweight Simulation Approach—A Case Study of the Digital-Twin-in-the-Loop for Machining Thin-Wall Structures
,”
J. Manuf. Syst.
,
71
, pp.
309
322
.
23.
Huang
,
T.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2017
, “
Tool Orientation Optimization for Reduction of Vibration and Deformation in Ball-End Milling of Thin-Walled Impeller Blades
,”
Procedia CIRP
,
58
, pp.
210
215
.
24.
Cai
,
Y.
,
Zhang
,
Z.
,
Xi
,
X.
, and
Zhao
,
D.
,
2023
, “
A Deformation Control Method in Thin-Walled Parts Machining Based on Force and Stiffness Matching Via Cutter Orientation Optimization
,”
ASME J. Manuf. Sci. Eng.
,
145
(
3
), p.
031007
.
25.
Habibi
,
M.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2021
, “
Minimizing Flute Engagement to Adjust Tool Orientation for Reducing Surface Errors in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), p.
021009
.
26.
Yan
,
Q.
,
Luo
,
M.
, and
Tang
,
K.
,
2018
, “
Multi-axis Variable Depth-of-Cut Machining of Thin-Walled Workpieces Based on the Workpiece Deflection Constraint
,”
Comput. Aided Des.
,
100
, pp.
14
29
.
27.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2016
, “
Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081005
.
28.
Sulitka
,
M.
,
Falta
,
J.
,
Stejskal
,
M.
, and
Kociánová
,
B.
,
2021
, “
Integrated Force Interaction Simulation Model for Milling Strategy Optimization of Thin-Walled Blisk Blade Machining
,”
Procedia CIRP
,
102
, pp.
174
179
.
29.
Ma
,
J.
,
He
,
G.
,
Liu
,
Z.
,
Qin
,
F.
,
Chen
,
S.
, and
Zhao
,
X.
,
2018
, “
Instantaneous Cutting-Amount Planning for Machining Deformation Homogenization Based on Position-Dependent Rigidity of Thin-Walled Surface Parts
,”
J. Manuf. Process.
,
34
, pp.
401
411
.
30.
Karimi
,
B.
, and
Altintas
,
Y.
,
2024
, “
Optimal Stock Removal to Reduce Chatter and Deflection Errors for Five-Axis Ball-End Milling of Thin-Walled Blades
,”
CIRP Ann.
,
73
(
1
), pp.
293
296
.
31.
Tunc
,
L. T.
, and
Gulmez
,
D. A.
,
2024
, “
Tool Path Strategies for Efficient Milling of Thin-Wall Features
,”
J. Manuf. Mater. Process.
,
8
(
4
), p.
169
.
32.
Li
,
J.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2020
, “
General Cutting Dynamics Model for Five-Axis Ball-End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121003
.
33.
Koike
,
Y.
,
Matsubara
,
A.
, and
Yamaji
,
I.
,
2013
, “
Design Method of Material Removal Process for Minimizing Workpiece Displacement at Cutting Point
,”
CIRP Ann.
,
62
(
1
), pp.
419
422
.
34.
Wang
,
J.
,
Ibaraki
,
S.
, and
Matsubara
,
A.
,
2017
, “
A Cutting Sequence Optimization Algorithm to Reduce the Workpiece Deformation in Thin-Wall Machining
,”
Precis. Eng.
,
50
, pp.
506
514
.
35.
Agarwal
,
A.
, and
Desai
,
K. A.
,
2021
, “
Rigidity Regulation Approach for Geometric Tolerance Optimization in End Milling of Thin-Walled Components
,”
ASME J. Manuf. Sci. Eng.
,
143
(
11
), p.
111006
.
36.
Ganser
,
P.
,
Landwehr
,
M.
,
Schiller
,
S.
,
Vahl
,
C.
,
Mayer
,
S.
, and
Bergs
,
T.
,
2022
, “
Knowledge-Based Adaptation of Product and Process Design in Blisk Manufacturing
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011023
.
37.
Bergs
,
T.
,
Biermann
,
D.
,
Erkorkmaz
,
K.
, and
M’Saoubi
,
R.
,
2023
, “
Digital Twins for Cutting Processes
,”
CIRP Ann.
,
72
(
2
), pp.
541
567
.
38.
Zhou
,
Y.
,
Xing
,
T.
,
Song
,
Y.
,
Li
,
Y.
,
Zhu
,
X.
,
Li
,
G.
, and
Ding
,
S.
,
2021
, “
Digital-Twin-Driven Geometric Optimization of Centrifugal Impeller With Free-Form Blades for Five-Axis Flank Milling
,”
J. Manuf. Syst.
,
58
, pp.
22
35
.
39.
Wu
,
Z.
,
Hobgood
,
M.
, and
Wolf
,
M.
,
2016
, “
Energy Mapping and Optimization in Rough Machining of Impellers
,”
ASME 2016 11th International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27–July 1
.
40.
Calleja
,
A.
,
González
,
H.
,
Polvorosa
,
R.
,
Gómez
,
G.
,
Ayesta
,
I.
,
Barton
,
M.
, and
de Lacalle
,
L. L.
,
2019
, “
Blisk Blades Manufacturing Technologies Analysis
,”
Procedia Manuf.
,
41
, pp.
714
722
.
41.
Marcotte
,
P.
, and
Dussault
,
J.-P.
,
1989
, “
A Sequential Linear Programming Algorithm for Solving Monotone Variational Inequalities
,”
SIAM J. Control Optim.
,
27
(
6
), pp.
1260
1278
.
42.
Lee
,
P.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball-End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
43.
Stroud
,
K. A.
, and
Booth
,
D. J.
,
2020
,
Advanced Engineering Mathematics
,
Bloomsbury Publishing
,
London
.
44.
Aginam
,
C.
,
Chidolue
,
C.
, and
Ezeagu
,
C.
,
2012
, “
Application of Direct Variational Method in the Analysis of Isotropic Thin Rectangular Plates
,”
ARPN J. Eng. Appl. Sci.
,
7
(
9
), pp.
1128
1138
.
45.
Huang
,
T.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Decoupled Chip Thickness Calculation Model for Cutting Force Prediction in Five-Axis Ball-End Milling
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1203
1217
.
You do not currently have access to this content.