Abstract

A hot melt centrifugal spinning process is used to manufacture polypropylene nonwoven textile such as those found in the filtering layers of medical masks. The fiber morphology and diameter distribution is influenced by the extrusion geometry and the polymer viscosity, often characterized by its melt flow index. These important geometric and physical aspects and their effects on the fiber quality are investigated in this work. The characteristics of the obtained nonwoven textile are also compared to those of the filtering layers found in a medical mask, usually made with the meltblown process. A custom-designed open-source lab-scale centrifugal spinning apparatus and the spinneret from a commercial cotton candy machine were used. This device was built at a very low cost while good quality fibers may be obtained compared to electrospinning. Its versatility allows to easily change the extrusion features. Here, a grid, nozzles, and a nozzlefree geometry, in which the polymer is extruded through a slit, were used. The behavior of five grades of polypropylene with five different melt flow indexes were compared in this process. Results show that fiber morphology improves when using the nozzle and nozzlefree geometries with a high melt flow index polymer, which were closer to the medical mask filtering layer.

References

1.
Tcharkhtchi
,
A.
,
Abbasnezhad
,
N.
,
Zarbini Seydani
,
M.
,
Zirak
,
N.
,
Farzaneh
,
S.
, and
Shirinbayan
,
M.
,
2021
, “
An Overview of Filtration Efficiency Through the Masks: Mechanisms of the Aerosols Penetration
,”
Bioact. Mater.
,
6
(
1
), pp.
106
122
.
2.
Rogalski
,
J. J.
,
Bastiaansen
,
C. W. M.
, and
Peijs
,
T.
,
2017
, “
Rotary Jet Spinning Review – A Potential High Yield Future for Polymer Nanofibers
,”
Nanocomposites
,
3
(
4
), pp.
97
121
.
3.
Han
,
Z.
,
Wang
,
L.
,
Liu
,
Y.
,
Chan
,
T.
,
Shi
,
Z.
, and
Yu
,
M.
,
2023
, “
How Do Three-Layer Surgical Masks Prevent SARS-CoV-2 Aerosol Transmission?
,”
Sep. Purif. Technol.
,
314
, p.
123574
.
4.
Yim
,
W.
,
Cheng
,
D.
,
Patel
,
S. H.
,
Kou
,
R.
,
Meng
,
Y. S.
, and
Jokerst
,
J. V.
,
2020
, “
KN95 and N95 Respirators Retain Filtration Efficiency Despite a Loss of Dipole Charge During Decontamination
,”
ACS Appl. Mater. Interfaces
,
12
(
49
), pp.
54473
54480
, PMID: 33253527.
5.
Drabek
,
J.
, and
Zatloukal
,
M.
,
2019
, “
Meltblown Technology for Production of Polymeric Microfibers/Nanofibers: A Review
,”
Phys. Fluids
,
31
(
9
), p.
091301
.
6.
Bandi
,
M. M.
,
2020
, “
Electrocharged Facepiece Respirator Fabrics Using Common Materials
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
476
(
2243
), p.
20200469
, Publisher: Royal Society
7.
Nakajima
,
T.
,
Kajiwara
,
K.
, and
McIntyre
,
J. E.
,
1994
,
Advanced Fiber Spinning Technology
,
Woodhead Publishing
,
Sawston, UK
.
8.
Ellison
,
C. J.
,
Phatak
,
A.
,
Giles
,
D. W.
,
Macosko
,
C. W.
, and
Bates
,
F. S.
,
2007
, “
Melt Blown Nanofibers: Fiber Diameter Distributions and Onset of Fiber Breakup
,”
Polymer
,
48
(
11
), pp.
3306
3316
.
9.
Pu
,
Y.
,
Zheng
,
J.
,
Chen
,
F.
,
Long
,
Y.
,
Wu
,
H.
,
Li
,
Q.
,
Yu
,
S.
,
Wang
,
X.
, and
Ning
,
X.
,
2018
, “
Preparation of Polypropylene Micro and Nanofibers by Electrostatic-Assisted Melt Blown and Their Application
,”
Polymers (Basel)
,
10
(
9
), p.
12
.
10.
Mellado
,
P.
,
McIlwee
,
H. A.
,
Badrossamay
,
M. R.
,
Goss
,
J. A.
,
Mahadevan
,
L.
, and
Kit Parker
,
K.
,
2011
, “
A Simple Model for Nanofiber Formation by Rotary Jet-Spinning
,”
Appl. Phys. Lett.
,
99
(
20
), p.
203107
.
11.
Badrossamay
,
M. R.
,
McIlwee
,
H. A.
,
Goss
,
J. A.
, and
Parker
,
K. K.
,
2010
, “
Nanofiber Assembly by Rotary Jet-Spinning
,”
Nano Lett.
,
10
(
6
), pp.
2257
2261
.
12.
Zhang
,
Z.-M.
,
Duan
,
Y.-S.
,
Xu
,
Q.
, and
Zhang
,
B.
,
2019
, “
A Review on Nanofiber Fabrication With the Effect of High-Speed Centrifugal Force Field
,”
J. Eng. Fibers Fabr.
,
14
, p.
11
.
13.
Huttunen
,
M.
, and
Kellomäki
,
M.
,
2011
, “
A Simple and High Production Rate Manufacturing Method for Submicron Polymer Fibres
,”
J. Tissue. Eng. Regen. Med.
,
5
(
8
), pp.
e239
243
.
14.
Zander
,
N. E.
,
2015
, “
Formation of Melt and Solution Spun Polycaprolactone Fibers by Centrifugal Spinning
,”
J. Appl. Polym. Sci.
,
132
(
2
), p.
9
.
15.
Padron
,
S.
,
Fuentes
,
A.
,
Caruntu
,
D.
, and
Lozano
,
K.
,
2013
, “
Experimental Study of Nanofiber Production Through Forcespinning
,”
J. Appl. Phys.
,
113
(
2
), p.
024318
, WOS:000313644500084.
16.
Raghavan
,
B.
,
Soto
,
H.
, and
Lozano
,
K.
,
2013
, “
Fabrication of Melt Spun Polypropylene Nanofibers by Forcespinning
,”
J. Eng. Fibers Fabr.
,
8
(
1
), p.
155892501300800
.
17.
Wongpajan
,
R.
,
Thumsorn
,
S.
,
Inoya
,
H.
,
Okoshi
,
M.
, and
Hamada
,
H.
,
2018
, “
Development of Cotton Candy Method for High Productivity Polypropylene Fibers Webs
,”
Fibers Polym.
,
19
(
1
), pp.
135
146
.
18.
Xu
,
H.
,
Chen
,
H.
,
Li
,
X.
,
Liu
,
C.
, and
Yang
,
B.
,
2014
, “
A Comparative Study of Jet Formation in Nozzle- and Nozzle-Less Centrifugal Spinning Systems
,”
J. Polym. Sci. Part B: Polym. Phys.
,
52
(
23
), pp.
1547
1559
, .
19.
Krifa
,
M.
,
Hammami
,
M. A.
, and
Wu
,
H.
,
2015
, “
Occurrence and Morphology of Bead-on-String Structures in Centrifugal Forcespun PA6 Fibers
,”
J. Text. Inst.
,
106
(
3
), pp.
284
294
,
20.
Chen
,
H.
,
Li
,
X.
,
Li
,
N.
, and
Yang
,
B.
,
2017
, “
Electrostatic-Assisted Centrifugal Spinning for Continuous Collection of Submicron Fibers
,”
Text. Res. J.
,
87
(
19
), pp.
2349
2357
.
21.
Stojanovska
,
E.
,
Kurtulus
,
M.
,
Abdelgawad
,
A.
,
Candan
,
Z.
, and
Kilic
,
A.
,
2018
, “
Developing Lignin-Based Bio-Nanofibers by Centrifugal Spinning Technique
,”
Int. J. Biol. Macromol.
,
113
, pp.
98
105
.
22.
Li
,
X.
,
Liu
,
J.
,
Lu
,
Y.
,
Hou
,
T.
,
Zhou
,
J.
,
Zhang
,
X.
,
Zhou
,
L.
,
Sun
,
M.
,
Xue
,
J.
, and
Yang
,
B.
,
2021
, “
Melting Centrifugally Spun Ultrafine Poly Butylene Adipate- Co -Terephthalate (PBAT) Fiber and Hydrophilic Modification
,”
DRSC Adv.
,
11
(
43
), pp.
27019
27026
.
23.
Skrivanek
,
J.
,
Holec
,
P.
,
Batka
,
O.
,
Bilek
,
M.
, and
Pokorny
,
P.
,
2022
, “
Optimization of the Spinneret Rotation Speed and Airflow Parameters for the Nozzleless Forcespinning of a Polymer Solution
,”
Polymers
,
14
(
5
), p.
1042
.
24.
Weitz
,
R. T.
,
Harnau
,
L.
,
Rauschenbach
,
S.
,
Burghard
,
M.
, and
Kern
,
K.
,
2008
, “
Polymer Nanofibers Via Nozzle-Free Centrifugal Spinning
,”
Nano Lett.
,
8
(
4
), pp.
1187
1191
.
25.
Chen
,
H.
,
Xu
,
H.
,
Sun
,
J.
,
Liu
,
C.
, and
Yang
,
B.
,
2015
, “
Effective Method for High-Throughput Manufacturing of Ultrafine Fibres Via Needleless Centrifugal Spinning
,”
Micro Nano Lett.
,
10
(
2
), pp.
81
84
.
26.
Schubert
,
G.
,
2015
, “7.03.4 Rayleigh-Taylor Instabilities,”
Treatise on Geophysics
, Vol.
11
, 2nd ed.,
Elsevier
,
Los Angeles, CA
, pp.
92
93
.
27.
Gunther
,
J.
,
Lengaigne
,
J.
,
Girard
,
M.
,
Toupin-Guay
,
V.
,
Teasdale
,
J. T.
,
Dubé
,
M.
, and
Tabiai
,
I.
,
2023
, “
A Versatile Hot Melt Centrifugal Spinning Apparatus for Thermoplastic Microfibres Production
,”
HardwareX
,
15
, pp.
1
28
.
28.
Gunther
,
J.
,
Girard
,
M.
, and
Tabiai
,
I.
,
2022
, “Hot Melt Centrifugal Spinning Apparatus for Thermoplastic Micro- and Nano-fibres Production, OSF,” Publisher: OSF, https://osf.io/jh6qy/, Accessed March 21, 2023.
29.
Subramanian
,
S.
,
2020
, “
How the Face Mask Became the World’s Most Coveted Commodity
,” The Guardian, p.
1
.
30.
F23 Committee
,
2020
, Specification for Performance of Materials Used in Medical Face Masks, ASTM International, .
You do not currently have access to this content.