Abstract

Additive manufacturing has found its niche in critical component applications in the aerospace and nuclear industries. For these industries, there is an increasing need for a cost-effective quality assurance method. For laser powder bed fusion (LPBF), in-situ sensing has shown promise with various forms of defect detection but has only shown limited success in microstructural characterization. Utilizing concurrent in-situ data collection from a complementary metal oxide semiconductor (CMOS) and photodiode sensor, this work establishes a relationship between in-situ sensor monitoring, crystallographic texture, and mechanical properties through machine learning (ML). By combining the in-situ monitoring data, ML, and a dataset of over 100 samples, including X-ray diffraction and tensile testing results, the model successfully predicts textures of 718 Ni alloy with up to 90% accuracy and identifies the correlation between texture and mechanical properties. Furthermore, three key characteristic samples were investigated via electron backscatter diffraction to delve deeper into mechanical property differences brought by microstructural features. While the model requires future datasets to improve reliability, it opens a pathway to use in-situ processing data to predict the microstructure and mechanical properties of LPBF materials.

References

1.
Dowling
,
L.
,
Kennedy
,
J.
,
O'Shaughnessy
,
S.
, and
Trimble
,
D.
,
2020
, “
A Review of Critical Repeatability and Reproducibility Issues in Powder Bed Fusion
,”
Mater. Des.
,
186
, p.
108346
.
2.
Wang
,
P.
,
Yang
,
Y.
, and
Moghaddam
,
N. S.
,
2022
, “
Process Modeling in Laser Powder Bed Fusion Towards Defect Detection and Quality Control via Machine Learning: The State-of-the-Art and Research Challenges
,”
J. Manuf. Process.
,
73
, pp.
961
984
.
3.
Mussatto
,
A.
,
Groarke
,
R.
,
Vijayaraghavan
,
R. K.
,
Hughes
,
C.
,
Obeidi
,
M. A.
,
Doğu
,
M. N.
,
Yalçin
,
M. A.
,
McNally
,
P. J.
,
Delaure
,
Y.
, and
Brabazon
,
D.
,
2022
, “
Assessing Dependency of Part Properties on the Printing Location in Laser-Powder Bed Fusion Metal Additive Manufacturing
,”
Mater. Today Commun.
,
30
, p.
103209
.
4.
Mohr
,
G.
,
Altenburg
,
S. J.
, and
Hilgenberg
,
K.
,
2020
, “
Effects of Inter Layer Time and Build Height on Resulting Properties of 316L Stainless Steel Processed by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
32
, p.
101080
.
5.
Ahmed
,
F.
,
Ali
,
U.
,
Sarker
,
D.
,
Marzbanrad
,
E.
,
Choi
,
K.
,
Mahmoodkhani
,
Y.
, and
Toyserkani
,
E.
,
2020
, “
Study of Powder Recycling and Its Effect on Printed Parts During Laser Powder-Bed Fusion of 17-4 pH Stainless Steel
,”
J. Mater. Process. Technol.
,
278
, p.
116522
.
6.
Stutzman
,
C.
,
Przyjemski
,
A.
, and
Nassar
,
A. R.
,
2023
, “
Effects of Gas Flow Speed on Bead Geometry and Optical Emissions During Laser Powder Bed Fusion Additive Manufacturing
,”
Rapid Prototyp. J.
,
29
(
7
), pp.
1386
1394
.
7.
Reijonen
,
J.
,
Björkstrand
,
R.
,
Riipinen
,
T.
,
Que
,
Z.
,
Metsä-Kortelainen
,
S.
, and
Salmi
,
M.
,
2021
, “
Cross-Testing Laser Powder Bed Fusion Production Machines and Powders: Variability in Mechanical Properties of Heat-Treated 316L Stainless Steel
,”
Mater. Des.
,
204
, p.
109684
.
8.
Moshiri
,
M.
,
Candeo
,
S.
,
Carmignato
,
S.
,
Mohanty
,
S.
, and
Tosello
,
G.
,
2019
, “
Benchmarking of Laser Powder Bed Fusion Machines
,”
J. Manuf. Mater. Process.
,
3
(
4
), p.
85
.
9.
Taherkhani
,
K.
,
Ero
,
O.
,
Liravi
,
F.
,
Toorandaz
,
S.
, and
Toyserkani
,
E.
,
2023
, “
On the Application of In-Situ Monitoring Systems and Machine Learning Algorithms for Developing Quality Assurance Platforms in Laser Powder Bed Fusion: A Review
,”
J. Manuf. Process.
,
99
, pp.
848
897
.
10.
Snow
,
Z.
,
Diehl
,
B.
,
Reutzel
,
E. W.
, and
Nassar
,
A.
,
2021
, “
Toward In-Situ Flaw Detection in Laser Powder Bed Fusion Additive Manufacturing Through Layerwise Imagery and Machine Learning
,”
J. Manuf. Syst.
,
59
, pp.
12
26
.
11.
Snow
,
Z.
,
Scime
,
L.
,
Ziabari
,
A.
,
Fisher
,
B.
, and
Paquit
,
V.
,
2023
, “
Observation of Spatter-Induced Stochastic Lack-of-Fusion in Laser Powder Bed Fusion Using In Situ Process Monitoring
,”
Addit. Manuf.
,
61
, p.
103298
.
12.
Scime
,
L.
, and
Beuth
,
J.
,
2019
, “
Using Machine Learning to Identify In-Situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
25
, pp.
151
165
.
13.
Taherkhani
,
K.
,
Eischer
,
C.
, and
Toyserkani
,
E.
,
2022
, “
An Unsupervised Machine Learning Algorithm for In-Situ Defect-Detection in Laser Powder-Bed Fusion
,”
J. Manuf. Process.
,
81
, pp.
476
489
.
14.
Baumgartl
,
H.
,
Tomas
,
J.
,
Buettner
,
R.
, and
Merkel
,
M.
,
2020
, “
A Deep Learning-Based Model for Defect Detection in Laser-Powder Bed Fusion Using In-Situ Thermographic Monitoring
,”
Prog. Addit. Manuf.
,
5
(
3
), pp.
277
285
.
15.
Seleznev
,
M.
,
Gustmann
,
T.
,
Friebel
,
J. M.
,
Peuker
,
U. A.
,
Kühn
,
U.
,
Hufenbach
,
J. K.
,
Biermann
,
H.
, and
Weidner
,
A.
,
2022
, “
In Situ Detection of Cracks During Laser Powder Bed Fusion Using Acoustic Emission Monitoring
,”
Addit. Manuf. Lett.
,
3
, p.
100099
.
16.
Pandiyan
,
V.
,
Wróbel
,
R.
,
Leinenbach
,
C.
, and
Shevchik
,
S.
,
2023
, “
Optimizing In-Situ Monitoring for Laser Powder Bed Fusion Process: Deciphering Acoustic Emission and Sensor Sensitivity With Explainable Machine Learning
,”
J. Mater. Process. Technol.
,
321
, p.
118144
.
17.
Bisht
,
M.
,
Ray
,
N.
,
Verbist
,
F.
, and
Coeck
,
S.
,
2018
, “
Correlation of Selective Laser Melting-Melt Pool Events With the Tensile Properties of Ti-6Al-4V ELI Processed by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
22
, pp.
302
306
.
18.
Kruth
,
J. P.
,
Mercelis
,
P.
, and
Van Vaerenbergh
,
J.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
Proceedings of 15th International Symposium on Electromachining, ISEM 2007
,
Pittsburgh, PA
,
Apr. 23–27
, pp.
421
426
.
19.
Raj
,
A.
,
Owen
,
C.
,
Stegman
,
B.
,
Abdel-Khalik
,
H.
,
Zhang
,
X.
, and
Sutherland
,
J. W.
,
2023
, “
Predicting Mechanical Properties From Co-Axial Melt Pool Monitoring Signals in Laser Powder Bed Fusion
,”
J. Manuf. Process.
,
101
, pp.
181
194
.
20.
Fabian
,
S.
,
Id
,
C.
,
Norley
,
C. J.
,
Pollmann
,
S. I.
, and
Holdsworth
,
W.
,
2022
, “
Cost-Effective Micro-CT System for Non-Destructive Testing of Titanium 3D Printed Medical Components
,”
PLoS One
,
17
(
10
), p.
e0275732
.
21.
Ciampa
,
F.
,
2018
, “
Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components
,”
Sensors (Switzerland)
,
18
(
2
), p.
609
.
22.
Lu
,
Q. Y.
, and
Wong
,
C. H.
,
2017
, “
Applications of Non-Destructive Testing Techniques for Post-Process Control of Additively Manufactured Parts
,”
Virtual Phys. Prototyp.
,
12
(
4
), pp.
301
321
.
23.
Zhang
,
W.
,
Guo
,
D.
,
Wang
,
L.
,
Davies
,
C. M.
,
Mirihanage
,
W.
,
Tong
,
M.
, and
Harrison
,
N. M.
,
2023
, “
X-Ray Diffraction Measurements and Computational Prediction of Residual Stress Mitigation Scanning Strategies in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
61
, p.
103275
.
24.
Marola
,
S.
,
Bosia
,
S.
,
Veltro
,
A.
,
Fiore
,
G.
,
Manfredi
,
D.
,
Lombardi
,
M.
,
Amato
,
G.
,
Baricco
,
M.
, and
Battezzati
,
L.
,
2021
, “
Residual Stresses in Additively Manufactured AlSi10Mg: Raman Spectroscopy and X-Ray Diffraction Analysis
,”
Mater. Des.
,
202
, p.
109550
.
25.
Kim
,
U. S.
, and
Park
,
J. W.
,
2019
, “
High-Quality Surface Finishing of Industrial Three-Dimensional Metal Additive Manufacturing Using Electrochemical Polishing
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
6
(
1
), pp.
11
21
.
26.
Maleki
,
E.
,
Bagherifard
,
S.
,
Rovatti
,
L.
,
Ishola
,
R. M.
,
Revuru
,
M.
, and
Guagliano
,
M.
,
2023
, “
Developing a Best Practice for Sample Preparation of Additive Manufactured AlSi10Mg for Electron Backscatter Diffraction Analysis
,”
Addit. Manuf. Lett.
,
5
, p.
100122
.
27.
Liu
,
H.
,
Ye
,
M.
,
Ye
,
Z.
,
Wang
,
L.
,
Wang
,
G.
,
Shen
,
X.
,
Xu
,
P.
, and
Wang
,
C.
,
2022
, “
High-Quality Surface Smoothening of Laser Powder Bed Fusion Additive Manufacturing AlSi10Mg via Intermittent Electrochemical Polishing
,”
Surf. Coatings Technol.
,
443
, p.
128608
.
28.
Catchpole-Smith
,
S.
,
Aboulkhair
,
N.
,
Parry
,
L.
,
Tuck
,
C.
,
Ashcroft
,
I. A.
, and
Clare
,
A.
,
2017
, “
Fractal Scan Strategies for Selective Laser Melting of ‘Unweldable’ Nickel Superalloys
,”
Addit. Manuf.
,
15
, pp.
113
122
.
29.
Sanchez
,
S.
,
Smith
,
P.
,
Xu
,
Z.
,
Gaspard
,
G.
,
Hyde
,
C. J.
,
Wits
,
W. W.
,
Ashcroft
,
I. A.
,
Chen
,
H.
, and
Clare
,
A. T.
,
2021
, “
Powder Bed Fusion of Nickel-Based Superalloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
165
, p.
103729
.
30.
Safaei
,
K.
,
Taheri
,
N.
,
Poorganji
,
B.
, and
Taheri
,
M.
,
2023
, “
Controlling Texture of NiTi Alloy Processed by Laser Powder Bed Fusion: Smart Build Orientation and Scanning Strategy
,”
Addit. Manuf. Lett.
,
5
, pp.
1
8
.
31.
Gokcekaya
,
O.
,
Ishimoto
,
T.
,
Hibino
,
S.
,
Yasutomi
,
J.
,
Narushima
,
T.
, and
Nakano
,
T.
,
2021
, “
Unique Crystallographic Texture Formation in Inconel 718 by Laser Powder Bed Fusion and Its Effect on Mechanical Anisotropy
,”
Acta Mater.
,
212
, p.
116876
.
32.
Mohr
,
G.
,
Evans
,
A.
,
Polatidis
,
E.
,
Jan
,
C.
,
Schro
,
J.
,
Serrano-munoz
,
I.
, and
Bruno
,
G.
,
2022
, “
Understanding the Impact of Texture on the Micromechanical Anisotropy of Laser Powder Bed Fused Inconel 718
,”
J. Mater. Sci.
,
57
(
31
), pp.
15036
15058
.
33.
Zhou
,
Y. Z.
,
Volek
,
A.
, and
Green
,
N. R.
,
2008
, “
Mechanism of Competitive Grain Growth in Directional Solidification of a Nickel-Base Superalloy
,”
Acta Mater.
,
56
(
11
), pp.
2631
2637
.
34.
Caron
,
P.
, and
Khan
,
T.
,
1983
, “
Improvement of Creep Strength in a Nickel-Base Single-Crystal Superalloy by Heat Treatment
,”
Mater. Sci. Eng.
,
61
(
2
), pp.
173
184
.
35.
Shao
,
W.
,
He
,
B.
,
Qiu
,
C.
, and
Li
,
Z.
,
2022
, “
Effect of Hatch Spacing and Laser Remelting on the Formation of Unique Crystallographic Texture of IN718 Superalloy Fabricated via Laser Powder Bed Fusion
,”
Opt. Laser Technol.
,
156
, pp.
1
12
.
36.
Ishimoto
,
T.
,
Hagihara
,
K.
,
Hisamoto
,
K.
, and
Nakano
,
T.
,
2021
, “
Stability of Crystallographic Texture in Laser Powder Bed Fusion : Understanding the Competition of Crystal Growth Using a Single Crystalline Seed
,”
Addit. Manuf.
,
43
, pp.
1
11
.
37.
Keshavarzkermani
,
A.
,
Esmaeilizadeh
,
R.
,
Ali
,
U.
,
Enrique
,
P. D.
,
Mahmoodkhani
,
Y.
,
Zhou
,
N. Y.
,
Bonakdar
,
A.
, and
Toyserkani
,
E.
,
2019
, “
Controlling Mechanical Properties of Additively Manufactured Hastelloy X by Altering Solidification Pattern During Laser Powder-Bed Fusion
,”
Mater. Sci. Eng. A
,
762
, p.
138081
.
38.
Leicht
,
A.
,
Yu
,
C. H.
,
Luzin
,
V.
,
Klement
,
U.
, and
Hryha
,
E.
,
2020
, “
Effect of Scan Rotation on the Microstructure Development and Mechanical Properties of 316L Parts Produced by Laser Powder Bed Fusion
,”
Mater. Charact.
,
163
, pp.
2
10
.
39.
Sofinowski
,
K. A.
,
Raman
,
S.
,
Wang
,
X.
,
Gaskey
,
B.
, and
Seita
,
M.
,
2021
, “
Layer-Wise Engineering of Grain Orientation (LEGO) in Laser Powder Bed Fusion of Stainless Steel 316L
,”
Addit. Manuf.
,
38
, p.
101809
.
40.
Stegman
,
B.
,
Shang
,
A.
,
Hoppenrath
,
L.
,
Raj
,
A.
,
Abdel-khalik
,
H.
,
Sutherland
,
J.
,
Schick
,
D.
,
Morgan
,
V.
,
Jackson
,
K.
, and
Zhang
,
X.
,
2022
, “
Volumetric Energy Density Impact on Mechanical Properties of Additively Manufactured 718 Ni Alloy
,”
Mater. Sci. Eng. A
,
854
, p.
143699
.
41.
Raj
,
A.
,
Huang
,
D.
,
Stegman
,
B.
,
Abdel-Khalik
,
H.
,
Zhang
,
X.
, and
Sutherland
,
J. W.
,
2023
, “
Modeling Spatial Variations in Co-Axial Melt Pool Monitoring Signals in Laser Powder Bed Fusion
,”
J. Manuf. Process.
,
89
, pp.
24
38
.
42.
Le
,
T. N.
,
Lee
,
M. H.
,
Lin
,
Z. H.
,
Tran
,
H. C.
, and
Lo
,
Y. L.
,
2021
, “
Vision-Based In-Situ Monitoring System for Melt-Pool Detection in Laser Powder Bed Fusion Process
,”
J. Manuf. Process.
,
68
, pp.
1735
1745
.
43.
Repossini
,
G.
,
Laguzza
,
V.
,
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
On the Use of Spatter Signature for In-Situ Monitoring of Laser Powder Bed Fusion
,”
Addit. Manuf.
,
16
, pp.
35
48
.
44.
Spurek
,
M. A.
,
Spierings
,
A. B.
,
Lany
,
M.
,
Revaz
,
B.
,
Santi
,
G.
,
Wicht
,
J.
, and
Wegener
,
K.
,
2022
, “
In-Situ Monitoring of Powder Bed Fusion of Metals Using Eddy Current Testing
,”
Addit. Manuf.
,
60
, p.
103259
.
45.
Ma
,
H.
,
Mao
,
Z.
,
Feng
,
W.
,
Yang
,
Y.
,
Hao
,
C.
,
Zhou
,
J.
,
Liu
,
S.
,
Xie
,
H.
,
Guo
,
G.
, and
Liu
,
Z.
,
2022
, “
Online In-Situ Monitoring of Melt Pool Characteristic Based on a Single High-Speed Camera in Laser Powder Bed Fusion Process
,”
Appl. Therm. Eng.
,
211
, p.
118515
.
46.
Han
,
Y.
,
Griffiths
,
R. J.
,
Yu
,
H. Z.
, and
Zhu
,
Y.
,
2020
, “
Quantitative Microstructure Analysis for Solid-State Metal Additive Manufacturing via Deep Learning
,”
J. Mater. Res.
,
35
(
15
), pp.
1936
1948
.
47.
Zhao
,
Z.
,
Wang
,
L.
,
Kong
,
D.
,
Liu
,
P.
,
He
,
X.
,
Ni
,
X.
,
Zhang
,
L.
, and
Dong
,
C.
,
2022
, “
Texture Dependence on the Mechanical Properties of 18Ni300 Maraging Steel Fabricated by Laser Powder Bed Fusion
,”
Mater. Charact.
,
189
, p.
111938
.
48.
Hibino
,
S.
,
Todo
,
T.
,
Ishimoto
,
T.
,
Gokcekaya
,
O.
,
Koizumi
,
Y.
,
Igashira
,
K.
, and
Nakano
,
T.
,
2021
, “
Control of Crystallographic Texture and Mechanical Properties of Hastelloy-X via Laser Powder Bed Fusion
,”
Crystals
,
11
(
9
), pp.
1
12
.
49.
Riabov
,
D.
,
Leicht
,
A.
,
Ahlström
,
J.
, and
Hryha
,
E.
,
2021
, “
Investigation of the Strengthening Mechanism in 316L Stainless Steel Produced With Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
822
, p.
141699
.
50.
Todo
,
T.
,
Ishimoto
,
T.
,
Gokcekaya
,
O.
, and
Oh
,
J.
,
2022
, “
Single Crystalline-Like Crystallographic Texture Formation of Pure Tungsten Through Laser Powder Bed Fusion
,”
Scr. Mater.
,
206
, p.
114252
.
51.
Gokcekaya
,
O.
,
Hayashi
,
N.
,
Ishimoto
,
T.
,
Ueda
,
K.
,
Narushima
,
T.
, and
Nakano
,
T.
,
2020
, “
Crystallographic Orientation Control of Pure Chromium via Laser Powder Bed Fusion and Improved High Temperature Oxidation Resistance
,”
Addit. Manuf.
,
36
, p.
101624
.
52.
Wang
,
X.
,
Muñiz-lerma
,
J. A.
,
Shandiz
,
M. A.
,
Sanchez-Mata
,
O.
, and
Brochu
,
M.
,
2019
, “
Crystallographic-Orientation-Dependent Tensile Behaviours of Stainless Steel 316L Fabricated by Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
766
, p.
138395
.
53.
Sanchez-Mata
,
O.
,
Wang
,
X.
,
Muñiz-Lerma
,
J. A.
, and
Atabay
,
S. E.
,
2021
, “
Dependence of Mechanical Properties on Crystallographic Orientation in Nickel-Based Superalloy Hastelloy X Fabricated by Laser Powder Bed Fusion
,”
J. Alloys Compd.
,
865
, p.
158868
.
54.
Fischer
,
T.
,
Hitzler
,
L.
, and
Werner
,
E.
,
2021
, “
Morphological and Crystallographic Effects in the Laser Powder-Bed Fused Stainless Steel Microstructure
,”
Crystals
,
11
(
6
), p.
672
.
55.
Yue
,
Z. F.
, and
Lu
,
Z. Z.
,
1998
, “
The Influence of Crystallographic Orientation and Strain Rate on the High-Temperature Low-Cyclic Fatigue Property of a Nickel-Base Single-Crystal Superalloy Procedures
,”
Metall. Mater. Trans. A
,
29
(
13
), pp.
1093
1099
.
56.
Gabb
,
T. P.
,
Gayda
,
J.
, and
Miner
,
R. V.
,
1986
, “
Orientation and Temperature Dependence of Some Mechanical Properties of the Single-Crystal Nickel-Base Superalloy René‌ N4: Part II. Low Cycle Fatigue Behavior
,”
Metall. Trans. A
,
17
(
3
), pp.
497
505
.
57.
Srivastava
,
A.
, and
Needleman
,
A.
,
2015
, “
Effect of Crystal Orientation on Porosity Evolution in a Creeping Single Crystal
,”
Mech. Mater.
,
90
, pp.
10
29
.
58.
Rae
,
C. M. F.
, and
Reed
,
R. C.
,
2007
, “
Primary Creep in Single Crystal Superalloys: Origins, Mechanisms and Effects
,”
Acta Mater.
,
55
(
3
), pp.
1067
1081
.
59.
He
,
X. Y.
,
Wang
,
H.
,
Zhu
,
Z. G.
,
Wang
,
L. Z.
,
Liu
,
J. Q.
,
Haghdadi
,
N.
,
Nai
,
S. M. L.
, et al
,
2022
, “
Texture Evolution in a CrMnFeCoNi High-Entropy Alloy Manufactured by Laser Powder Bed Fusion
,”
J. Mater. Sci.
,
57
(
21
), pp.
9714
9725
.
60.
Pacheco
,
V.
,
Marattukalam
,
J. J.
,
Karlsson
,
D.
,
Dessieux
,
L.
,
Van Tran
,
K.
,
Beran
,
P.
,
Manke
,
I.
, et al
,
2022
, “
On the Relationship Between Laser Scan Strategy, Texture Variations and Hidden Nucleation Sites for Failure in Laser Powder-Bed Fusion
,”
Materialia
,
26
, p.
101614
.
You do not currently have access to this content.