Abstract

Inspired by porous morphology in nature, such as bone and lung tissues, synthetic porous materials are widely adopted in engineering applications that require lightweight, thermal resistance, energy absorption, and structural flexibility. One of the main challenges in the current porous material manufacturing techniques is their limited control over individual pore size, connectivity, and distribution. This paper presents a novel additive manufacturing process to fabricate porosity-embedded structures by integrating stereolithography and inkjet printing using a sacrificial liquid–water. A solenoid-based inkjet nozzle dispenses water droplets onto a layer of liquid photopolymer resin. Then the resin layer is photocured by a mask image projection device using a digital light processing device. The photocuring process defines the layer profile and captures the deposited water droplets in the solidified layer. The refilled fresh resin will further embed water droplets and form a new layer for the subsequent water droplet deposition. Three-dimensional (3D) structures with embedded water droplets can be printed layer-by-layer. The captured water will evaporate when heated, leaving an air-filled porous 3D structure. By selectively depositing water droplets and varying inkjet printing parameters, including pressure, nozzle opening time, and jetting frequency, the micropores whose sizes from 100 µm to 500 µm and distributions within the 3D-printed part can be modulated. This hybrid process can fabricate 3D structures with homogenously distributed pores and graded polymer structures with varying porosities. The elastic modulus of 3D-printed foam structures in different pore distributions has been tested and compared.

References

1.
Hsia
,
C. C.W.
,
Hyde
,
D. M.
,
Ochs
,
M
, and
Weibel
,
E. R.
,
2010
, “
How to Measure Lung Structure–What for? On the Standards for the Quantitative Assessment of Lung Structure
Respir. Physiol. Neuro.
,
171
(
2
), pp.
72
74
.
2.
Leys
,
S. P.
,
Yahel
,
G.
,
Reidenbach
,
M. A.
,
Tunnicliffe
,
V.
,
Shavit
,
U.
, and
Reiswig
,
H. M.
,
2011
, “
The Sponge Pump: The Role of Current Induced Flow in the Design of the Sponge Body Plan
,”
PLoS One
,
6
(
12
), p.
e27787
.
3.
Bishop
,
P. J.
,
Hocknull
,
S. A.
,
Clemente
,
C. J.
,
Hutchinson
,
J. R.
,
Farke
,
A. A.
,
Beck
,
B. R.
,
Barrett
,
R. S.
, and
Lloyd
,
D. G.
,
2018
, “
Cancellous Bone and Theropod Dinosaur Locomotion. Part I—An Examination of Cancellous Bone Architecture in the Hindlimb Bones of Theropods
,”
Peer J.
,
6
.
4.
Karihaloo
,
B. L.
,
Zhang
,
K.
, and
Wang
,
J.
,
2013
, “
Honeybee Combs: How the Circular Cells Transform Into Rounded Hexagons
,”
J. R. Soc., Interface
,
10
(
86
), p.
20130299
.
5.
Wang
,
C.-C.
,
Yang
,
K.-C.
,
Lin
,
K.-H.
,
Liu
,
H.-C.
, and
Lin
,
F.-H.
,
2011
, “
A Highly Organized Three-Dimensional Alginate Scaffold for Cartilage Tissue Engineering Prepared by Microfluidic Technology
,”
Biomaterials
,
32
(
29
), pp.
7118
7126
.
6.
Hutmacher
,
D. W.
,
2000
, “
Scaffolds in Tissue Engineering Bone and Cartilage
,”
Biomaterials
,
21
(
24
), pp.
2529
2543
.
7.
Choi
,
S.-J.
,
Kwon
,
T.-H.
,
Im
,
H.
,
Moon
,
D.-I.
,
Baek
,
D. J.
,
Seol
,
M.-L.
,
Duarte
,
J. P.
, and
Choi
,
Y.-K.
,
2011
, “
A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil From Water
,”
ACS Appl. Mater. Interfaces
,
3
(
12
), pp.
4552
4556
.
8.
Cha
,
S.
,
Kim
,
S. M.
,
Kim
,
H.
,
Ku
,
J.
,
Sohn
,
J. I.
,
Park
,
Y. J.
,
Song
,
B. G.
, et al
,
2011
, “
Porous PVDF as Effective Sonic Wave Driven Nanogenerators
,”
Nano Lett.
,
11
(
12
), pp.
5142
5147
.
9.
Mi
,
H.-Y.
,
Jing
,
X.
,
Zheng
,
Q.
,
Fang
,
L.
,
Huang
,
H.-X.
,
Turng
,
L.-S.
, and
Gong
,
S.
,
2018
, “
High-Performance Flexible Triboelectric Nanogenerator Based on Porous Aerogels and Electrospun Nanofibers for Energy Harvesting and Sensitive Self-Powered Sensing
,”
Nano Energy
,
48
, pp.
327
336
.
10.
Li
,
M.
,
Xu
,
L.
, and
Lu
,
W.
,
2019
, “
Nanopore Size Effect on Critical Infiltration Depth of Liquid Nanofoam as a Reusable Energy Absorber
,”
J. Appl. Phys.
,
125
(
4
), p.
044303
.
11.
Yao
,
H.
,
Ge
,
J.
,
Wang
,
C.
,
Wang
,
X.
,
Hu
,
W.
,
Zheng
,
Z.
,
Ni
,
Y.
, and
Yu
,
S.
,
2013
, “
A Flexible and Highly Pressure-Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design
,”
Adv. Mater.
,
25
(
46
), pp.
6692
6698
.
12.
Del Rey
,
R.
,
Alba
,
J.
,
Arenas
,
J. P.
, and
Sanchis
,
V. J.
,
2012
, “
An Empirical Modelling of Porous Sound Absorbing Materials Made of Recycled Foam
,”
Appl. Acoust.
,
73
(
6–7
), pp.
604
609
.
13.
Zampieri
,
A.
,
Sieber
,
H.
,
Selvam
,
T.
,
Mabande
,
G. T.
,
Schwieger
,
W.
,
Scheffler
,
F.
,
Scheffler
,
M.
, and
Greil
,
P.
,
2005
, “
Biomorphic Cellular SiSiC/Zeolite Ceramic Composites: From Rattan Palm to Bioinspired Structured Monoliths for Catalysis and Sorption
,”
Adv. Mater.
,
17
(
3
), pp.
344
349
.
14.
Losic
,
D.
,
Mitchell
,
J. G.
,
Lal
,
R.
, and
Voelcker
,
N. H.
,
2007
, “
Rapid Fabrication of Micro-and Nanoscale Patterns by Replica Molding From Diatom Biosilica
,”
Adv. Funct. Mater.
,
17
(
14
), pp.
2439
2446
.
15.
Han
,
J.-W.
,
Kim
,
B.
,
Li
,
J.
, and
Meyyappan
,
M.
,
2013
, “
Flexible, Compressible, Hydrophobic, Floatable, and Conductive Carbon Nanotube-Polymer Sponge
,”
Appl. Phys. Lett.
,
102
(
5
), p.
051903
.
16.
Studart
,
A. R.
,
Studer
,
J.
,
Xu
,
L.
,
Yoon
,
K.
,
Shum
,
H. C.
, and
Weitz
,
D. A.
,
2011
, “
Hierarchical Porous Materials Made by Drying Complex Suspensions
,”
Langmuir
,
27
(
3
), pp.
955
964
.
17.
Chang
,
H.-K.
,
Chang
,
G. T.
,
Thokchom
,
A. K.
,
Kim
,
T.
, and
Park
,
J.
,
2018
, “
Ultra-Fast Responsive Colloidal–Polymer Composite-Based Volatile Organic Compounds (VOC) Sensor Using Nanoscale Easy Tear Process
,”
Sci. Rep.
,
8
(
1
), pp.
1
11
.
18.
Chen
,
Z.
,
Xu
,
C.
,
Ma
,
C.
,
Ren
,
W.
, and
Cheng
,
H.
,
2013
, “
Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding
,”
Adv. Mater.
,
25
(
9
), pp.
1296
1300
.
19.
Vakifahmetoglu
,
C.
,
Pippel
,
E.
,
Woltersdorf
,
J.
, and
Colombo
,
P.
,
2010
, “
Growth of One-Dimensional Nanostructures in Porous Polymer Derived Ceramics by Catalyst-Assisted Pyrolysis. Part I: Iron Catalyst
,”
J. Am. Ceram. Soc.
,
93
(
4
), pp.
959
968
.
20.
McCall
,
W. R.
,
Kim
,
K.
,
Heath
,
C.
,
La Pierre
,
G.
, and
Sirbuly
,
D. J.
,
2014
, “
Piezoelectric Nanoparticle–Polymer Composite Foams
,”
ACS Appl. Mater. Interfaces
,
6
(
22
), pp.
19504
19509
.
21.
Lewis
,
J. A.
,
2006
, “
Direct Ink Writing of 3D Functional Materials
,”
Adv. Funct. Mater.
,
16
(
17
), pp.
2193
2204
.
22.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
, et al
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
23.
Song
,
X.
,
Zhang
,
Z.
,
Chen
,
Z.
, and
Chen
,
Y.
,
2017
, “
Porous Structure Fabrication Using a Stereolithography-Based Sugar Foaming Method
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031015
.
24.
Kleger
,
N.
,
Minas
,
C.
,
Bosshard
,
P.
,
Mattich
,
I.
,
Masania
,
K.
, and
Studart
,
A. R.
,
2021
, “
Hierarchical Porous Materials Made by Stereolithographic Printing of Photocurable Emulsions
,”
Sci. Rep.
,
11
(
1
), pp.
1
11
.
25.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.
26.
Elsing
,
J.
,
Quell
,
A.
, and
Stubenrauch
,
C.
,
2017
, “
Toward Functionally Graded Polymer Foams Using Microfluidics
,”
Adv. Eng. Mater.
,
19
(
8
), p.
1700195
.
27.
Mea
,
H. J.
,
Delgadillo
,
L.
, and
Wan
,
J.
,
2020
, “
On-Demand Modulation of 3D-Printed Elastomers Using Programmable Droplet Inclusions
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
26
), pp.
14790
14797
.
28.
Visser
,
C. W.
,
Amato
,
D. N.
,
Mueller
,
J.
, and
Lewis
,
J. A.
,
2019
, “
Architected Polymer Foams Via Direct Bubble Writing
,”
Adv. Mater.
,
31
(
46
), p.
1904668
.
29.
Amato
,
D. N.
,
Amato
,
D. V.
,
Sandoz
,
M.
,
Weigand
,
J.
,
Patton
,
D. L.
, and
Visser
,
C. W.
,
2020
, “
Programmable Porous Polymers Via Direct Bubble Writing With Surfactant Free Inks
,”
ACS Appl. Mater. Interfaces
,
12
(
37
), pp.
42048
42055
.
30.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D. M.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators, A
,
121
(
1
), pp.
113
120
.
31.
Xu
,
K.
, and
Chen
,
Y.
,
2015
, “
Mask Image Planning for Deformation Control in Projection-Based Stereolithography Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031014
.
32.
Wan
,
L.-S.
,
Zhu
,
L.-W.
,
Ou
,
Y.
, and
Xu
,
Z.-K.
,
2014
, “
Multiple Interfaces in Self-Assembled Breath Figures
,”
Chem. Commun.
,
50
(
31
), pp.
4024
4039
.
33.
Connal
,
L. A.
,
Vestberg
,
R.
,
Gurr
,
P. A.
,
Hawker
,
C. J.
, and
Qiao
,
G. G.
,
2008
, “
Patterning on Nonplanar Substrates: Flexible Honeycomb Films From a Range of Self-Assembling Star Copolymers
,”
Langmuir
,
24
(
2
), pp.
556
562
.
34.
Phan
,
C. M.
,
Allen
,
B.
,
Peters
,
L. B.
,
Le
,
T. N.
, and
Tade
,
M. O.
,
2012
, “
Can Water Float on Oil?
,”
Langmuir
,
28
(
10
), pp.
4609
4613
.
35.
Wang
,
B.
,
Wang
,
C.
,
Yu
,
Y.
, and
Chen
,
X.
,
2020
, “
Spreading and Penetration of a Micro-Sized Water Droplet Impacting Onto Oil Layers
,”
Phys. Fluids
,
32
(
1
), p.
012003
.
36.
Pan
,
Y.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051011
.
37.
Li
,
X.
,
Mao
,
H.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2019
, “
Mask Video Projection Based Stereolithography With Continuous Resin Flow to Build Digital Models in Minutes
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081007
.
38.
Xu
,
Y.
,
Wang
,
Z.
,
Gong
,
S.
, and
Chen
,
Y.
,
2021
, “
Reusable Support for Additive Manufacturing
,”
Addit. Manuf.
,
39
.
39.
Xu
,
Y.
,
Qi
,
F.
,
Mao
,
H.
,
Li
,
S.
,
Zhu
,
Y.
,
Gong
,
J.
,
Wang
,
L.
,
Malmstadt
,
N.
, and
Chen
,
Y.
,
2022
, “
In-Situ Transfer Vat Photopolymerization for Transparent Microfluidic Device Fabrication
,”
Nat. Commun.
,
13
(
1
), pp.
1
11
.
40.
Li
,
X.
,
Yuan
,
Y.
,
Liu
,
L.
,
Leung
,
Y.-S.
,
Chen
,
Y.
,
Guo
,
Y.
,
Chai
,
Y.
, and
Chen
,
Y.
,
2020
, “
3D Printing of Hydroxyapatite/β-Tricalcium Phosphate Scaffold With Hierarchical Porous Structure for Bone Regeneration
,”
Bio-Des. Manuf.
,
3
(
1
), pp.
15
29
.
You do not currently have access to this content.