Abstract

Cast aluminum alloys are promising materials that can simplify the manufacturing process of automobile body structures. However, the low ductility of cast aluminum poses significant challenges to existing riveting technologies. In the present work, dissimilar AA6061-T6 aluminum alloy and Al–Si7Mg cast aluminum were joined by self-piercing riveting (SPR) and friction self-piercing riveting (F-SPR) processes to reveal the effect of friction heat on rivetability of low-ductility cast aluminum alloys. The joint macro-morphology, microstructure, peak tooling force, microhardness distribution, tensile-shear, and cross-tension performance of the two processes were comparatively studied. Results indicated that the in-situ softening effect of friction heat in the F-SPR process could effectively improve the ductility of cast aluminum, avoid cracking, and reduce the tooling force by 53%, compared to the SPR process. The severe plastic deformation and friction heat induced by rivet rotation results in refined equiaxed grains of aluminum near the rivets and solid-state bonding between aluminum sheets in the rivet cavity. The F-SPR joints are superior to SPR joints in both tensile-shear and cross-tension performance due to the avoidance of cracking, increase of mechanical interlocking, and solid-state bonding of interfaces. Significantly, when Al–Si7Mg is placed on the lower layer, the peak tensile-shear and cross-tension loads of the F-SPR joints are 7.2% and 45.5% higher than the corresponding SPR joints, respectively.

References

1.
Project Team on the Strategy Pathway for Peaking Carbon, E. C. N.
,
2021
, “
Analysis of a Peaked Carbon Emission Pathway in China Toward Carbon Neutrality
,”
Engineering
,
7
(
12
), pp.
1673
1677
.
2.
Li
,
J.
,
Wang
,
L.
,
Chen
,
Y.
,
Lu
,
H.
, and
Jiang
,
H.
,
2020
, “
Research and Application of Lightweight Index for Passenger Cars
,”
Autom. Innov.
,
3
(
3
), pp.
270
279
.
3.
Lin
,
Y.
,
Min
,
J.
,
Teng
,
H.
,
Lin
,
J.
,
Hu
,
J.
, and
Xu
,
N.
,
2020
, “
Flexural Performance of Steel–FRP Composites for Automotive Applications
,”
Autom. Innov.
,
3
(
3
), pp.
280
295
.
4.
Wang
,
D.
,
Xie
,
C.
,
Liu
,
Y.
,
Xu
,
W.
, and
Chen
,
Q.
,
2020
, “
Multi-Objective Collaborative Optimization for the Lightweight Design of an Electric Bus Body Frame
,”
Autom. Innov.
,
3
(
3
), pp.
250
259
.
5.
Bandivadekar
,
A.
,
Bodek
,
K.
,
Cheah
,
L.
,
Evans
,
C.
, and
Weiss
,
M.
,
2008
, “
On the Road in 2035: Reducing Transportation’s Petroleum Consumption and GHG Emissions
,” Laboratory for Energy and the Environment, Report No. LFEE 2008-05 RP.
6.
Yu
,
H. J.
,
Dong
,
Q.
,
Chen
,
Y.
, and
Chen
,
C. Z.
,
2018
, “
Influence of Silicon on Growth Mechanism of Micro-Arc Oxidation Coating on Cast AI-Si Alloy
,”
R. Soc. Open Sci.
,
5
(
7
), p.
172428
.
7.
Li
,
P.
,
Nie
,
F.
,
Dong
,
H.
,
Li
,
S.
,
Yang
,
G.
, and
Zhang
,
H.
,
2018
, “
Pulse MIG Welding of 6061-T6/A356-T6 Aluminum Alloy Dissimilar T-Joint
,”
J. Mater. Eng. Perform.
,
27
(
9
), pp.
4760
4769
.
8.
Chargedevs
,
2020
, “
In Model Y, Tesla Replaces 70 Underbody Parts With One Casting
,” https://chargedevs.com/newswire/in-model-y-tesla-replaces-70-underbody-parts-with-one-casting/
9.
Qi
,
L.
,
Zhang
,
Q.
,
Ma
,
Y.
,
Xu
,
Y.
,
Han
,
X.
, and
Li
,
Y.
,
2021
, “
A Comparative Study on Mechanical Performance of Traditional and Magnetically Assisted Resistance Spot Welds of A7N01 Aluminum Alloy
,”
J. Manuf. Process.
,
66
, pp.
133
144
.
10.
Sigler
,
D. R.
,
Schroth
,
J. G.
, and
Karagoulis
,
M. J.
,
2010
, “
New Electrode Weld Face Geometries for Spot Welding Aluminum
,”
AWS Sheet Metal Welding Conference XIV
,
Livonia, MI
,
May 11–14
.
11.
Kang
,
J.
,
Chen
,
Y.
,
Sigler
,
D.
,
Carlson
,
B.
, and
Wilkinson
,
D. S.
,
2016
, “
Effect of Adhesive on Fatigue Property of Aural2 to AA5754 Dissimilar Aluminum Alloy Resistance Spot Welds
,”
Eng. Fail. Anal.
,
69
, pp.
57
65
.
12.
Kang
,
J.
,
Chen
,
Y.
,
Sigler
,
D.
,
Carlson
,
B.
, and
Wilkinson
,
D. S.
,
2015
, “
Fatigue Behavior of Dissimilar Aluminum Alloy Spot Welds
,”
Procedia Eng.
,
114
, pp.
149
156
.
13.
Deng
,
L.
,
Li
,
Y.
,
Cai
,
W.
,
Haselhuhn
,
A. S.
, and
Carlson
,
B. E.
,
2020
, “
Simulating Thermoelectric Effect and Its Impact on Asymmetric Weld Nugget Growth in Aluminum Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091001
.
14.
Deng
,
L.
,
Li
,
Y.
, and
Carlson
,
B. E.
,
2018
, “
Effects of Electrode Surface Topography on Aluminum Resistance Spot Welding
,”
Weld. J.
,
97
(
4
), pp.
120
132
.
15.
Ma
,
Y.
,
Niu
,
S.
,
Shan
,
H.
,
Li
,
Y.
, and
Ma
,
N.
,
2020
, “
Impact of Stack Orientation on Self-Piercing Riveted and Friction Self-Piercing Riveted Aluminum Alloy and Magnesium Alloy Joints
,”
Autom. Innov.
,
3
(
3
), pp.
342
249
.
16.
Zhao
,
X.
,
Meng
,
D.
,
Zhang
,
J.
, and
Han
,
Q.
,
2020
, “
The Effect of Heat Treatment on Die Casting Aluminum to Apply Self-Pierce Riveting
,”
Int. J. Adv. Manuf. Technol.
,
109
(
9–12
), pp.
2409
2419
.
17.
Jäckel
,
M.
,
Coppieters
,
S.
,
Hofmann
,
M.
,
Vandermeiren
,
N.
,
Landgrebe
,
D.
,
Debruyne
,
D.
,
Wallmersberger
,
T.
, and
Faes
,
K.
,
2017
, “
Mechanical Joining of Materials With Limited Ductility: Analysis of Process-Induced Defects
,”
International ESAFORM Conference on Material Forming 2017
,
Ireland
,
Apr. 26
.
18.
Grimm
,
T.
,
Jäckel
,
M.
,
Falk
,
T.
, and
Drossel
,
W.-G.
, “
Technologies for the Mechanical Joining of Aluminum Die Castings
,”
Proceedings of the 22nd International Esaform Conference on Material Forming: Esaform 2019
,
Vitoria-Gasteiz
,
May 8–10
.
19.
Drossel
,
W. G.
, and
Jäckel
,
M.
,
2014
, “
New Die Concept for Self-Pierce Riveting Materials With Limited Ductility
,”
Key Eng. Mater.
,
611–612
, pp.
1452
1459
.
20.
Mucha
,
J.
,
Spišák
,
E.
, and
Kaščák
,
L.
,
2011
, “
Non-Standard Car Body Element Joining Process With Solid Self-Piercing Rivet
,”
Arch. Mot.
,
2
, pp.
59
69
.
21.
Querengässer
,
M.
,
Falkenberg
,
H.-J.
, and
Gschneidinger
,
2013
, “
Verfahren und Vorrichtung zum Fügen von Fügepartnern durch einen Stanzniet
,” Patent Application EP 2638987 A1. BMW AG.
22.
Klarner
,
F.
,
Nuebler
,
T.
, and
Zintl
,
A.
,
2010
, “
Self-Piercing Rivet
.” Stanzstauchniet. Patentanmeldung WO 20012/113463 A1. Kerb-Konus-Vertriebs-GmbH.
23.
BOLLHOFF
,
2018
, “
Joining of Aluminium Cast With New Ring Groove Die
,” https://www.boellhoff.com/de-en/news/news/2017/rivset-ring-groove-die.php
24.
Li
,
Y.
,
Wei
,
Z.
,
Wang
,
Z.
, and
Li
,
Y.
,
2013
, “
Friction Self-Piercing Riveting of Aluminum Alloy AA6061-T6 to Magnesium Alloy AZ31B
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061007
.
25.
Ma
,
Y.
,
He
,
G.
,
Lou
,
M.
,
Li
,
Y.
, and
Lin
,
Z.
,
2018
, “
Effects of Process Parameters on Crack Inhibition and Mechanical Interlocking in Friction Self-Piercing Riveting of Aluminum Alloy and Magnesium Alloy
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101015
.
26.
Yang
,
B.
,
Ma
,
Y.
,
Shan
,
H.
,
Niu
,
S.
, and
Li
,
Y.
,
2022
, “
Friction Self-Piercing Riveting (F-SPR) of Aluminum Alloy to Magnesium Alloy Using a Flat Die
,”
J. Magnesium Alloys
,
10
(
5
), pp.
1207
1219
.
27.
Liu
,
X.
,
Lim
,
Y. C.
,
Li
,
Y.
,
Tang
,
W.
,
Ma
,
Y.
,
Feng
,
Z.
, and
Ni
,
J.
,
2016
, “
Effects of Process Parameters on Friction Self-Piercing Riveting of Dissimilar Materials
,”
J. Mater. Process. Technol.
,
237
, pp.
19
30
.
28.
Yang
,
B.
,
Ma
,
Y.
,
Shan
,
H.
,
Yang
,
T.
,
Sun
,
J.
, and
Li
,
Y.
,
2021
, “
Mechanical Performance of [Q7]Friction Self-Piercing Riveted 2A12-T4 Aluminum Alloy Sheets
,”
Acta Aeronaut. Astronaut. Sin.
,
43
(
2
), p.
625111
.
29.
Ma
,
Y.
,
Niu
,
S.
,
Liu
,
H.
,
Li
,
Y.
, and
Ma
,
N.
,
2021
, “
Microstructural Evolution in Friction Self-Piercing Riveted Aluminum Alloy AA7075-T6 Joints
,”
J. Mater. Sci. Technol.
,
82
, pp.
80
95
.
30.
Ma
,
Y.
,
Yang
,
B.
,
Lou
,
M.
,
Li
,
Y.
, and
Ma
,
N.
,
2020
, “
Effect of Mechanical and Solid-State Joining Characteristics on Tensile-Shear Performance of Friction Self-Piercing Riveted Aluminum Alloy AA7075-T6 Joints
,”
J. Mater. Process. Technol.
,
278
, p.
116543
.
31.
Ma
,
Y. W.
,
Li
,
Y. B.
, and
Lin
,
Z. Q.
,
2019
, “
Joint Formation and Mechanical Performance of Friction Self-Piercing Riveted Aluminum Alloy AA7075-T6 Joints
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041005
.
32.
Ma
,
Y.
,
Shan
,
H.
,
Niu
,
S.
,
Li
,
Y.
,
Lin
,
Z.
, and
Ma
,
N.
,
2021
, “
A Comparative Study of Friction Self-Piercing Riveting and Self-Piercing Riveting of Aluminum Alloy AA5182-O
,”
Engineering
,
7
(
12
), pp.
1741
1750
.
33.
Ma
,
Y.
,
Lou
,
M.
,
Li
,
Y.
, and
Lin
,
Z.
,
2018
, “
Effect of Rivet and Die on Self-Piercing Rivetability of AA6061-T6 and Mild Steel CR4 of Different Gauges
,”
J. Mater. Process. Technol.
,
251
, pp.
282
294
.
34.
Han
,
L.
,
Thornton
,
M.
,
Li
,
D.
, and
Shergold
,
M.
,
2010
, “
Effect of Setting Velocity on Self-Piercing Riveting Process and Joint Behaviour for Automotive Applications
,” SAE Technical Paper.
35.
Eckstein
,
J.
,
Roos
,
E.
,
Roll
,
K.
,
Ruther
,
M.
, and
Seidenfuß
,
M.
, “
Experimental and Numerical Investigations to Extend the Process Limits in Self-Pierce Riveting
,”
AIP Conference Proceedings
,
Stanford, CA
,
Feb. 5–8
, pp.
279
286
.
36.
Wang
,
J.
,
Yang
,
K.
,
Zhang
,
Y.
,
Lu
,
Y.-L.
,
Bai
,
Z.-H.
, and
Li
,
X.-C.
,
2021
, “
Investigation on Variations of Microstructures and Mechanical Properties Along Thickness Direction of Friction Stir Processed AA2014 Aluminum Alloy Via Ultra-Rapid Cooling
,”
Mater. Charact.
,
179
, p.
111352
.
37.
Liu
,
H.
, and
Fujii
,
H.
,
2018
, “
Microstructural and Mechanical Properties of a Beta-Type Titanium Alloy Joint Fabricated by Friction Stir Welding
,”
Mater. Sci. Eng. A
,
711
, pp.
140
148
.
You do not currently have access to this content.