Abstract

Capturing data about manual processes and manual machining steps is important in manufacturing for better traceability, optimization, and better planning. Current manufacturing research focuses on sensor-based recognition of manual activities across multiple tools or power tools, but little on recognition within a versatile power tool type. Due to the strong influence of operator skill on process performance and consistency as well as many disturbance variables, activity recognition is a challenge in manual grinding. It is unclear how accurately manual activities can be recognized within one handheld grinder type across diverse trials. Therefore, this article investigates how manual activities can be recognized in diverse trials within an angle grinder type in a leave-one-trial-out cross-validation in comparison to classical cross-validation to identify the effect of diverse trials with four different classifies. An experimental study was conducted to collect measurement data with data loggers attached to two angle grinders, four manual activities with different abrasive tools, and three operators. Results show very good accuracies (97.68%) with cross-validation and worse accuracies (70.48%) with leave-one-trial-out cross-validation for the ensemble learning classifier. This means that recognition of the four chosen manual activities within an angle grinder is feasible but depends on how much the trial deviates from the reference training data. For further research on activity recognition in manual manufacturing, we propose the explicit consideration and evaluation of disturbance variables and diversity in data collection for the training of machine learning models.

References

1.
Roblek
,
V.
,
Meško
,
M.
, and
Krapež
,
A.
,
2016
, “
A Complex View of Industry 4.0
,”
SAGE Open
,
6
(
2
), p.
215824401665398
.
2.
Lee
,
S.
,
Liu
,
L.
,
Radwin
,
R.
, and
Li
,
J.
,
2021
, “
Machine Learning in Manufacturing Ergonomics: Recent Advances, Challenges, and Opportunities
,”
IEEE Robot. Autom. Lett.
,
6
(
3
), pp.
5745
5752
.
3.
Redzepagic
,
A.
,
Löffler
,
C.
,
Feigl
,
T.
, and
Mutschler
,
C.
,
2020
, “
A Sense of Quality for Augmented Reality Assisted Process Guidance
,”
2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)
,
Recife, Brazil
,
Nov. 9–13
, pp.
129
134
.
4.
Stiefmeier
,
T.
,
Lombriser
,
C.
,
Roggen
,
D.
,
Junker
,
H.
,
Ogris
,
G.
, and
Tröster
,
G.
,
2006
, “
Event-Based Activity Tracking in Work Environments
,”
3rd International Forum on Applied Wearable Computing 2006
,
Bremen, Germany
,
Mar. 15–16
, pp.
1
10
.
5.
Ward
,
J. A.
,
Lukowicz
,
P.
,
Tröster
,
G.
, and
Starner
,
T. E.
,
2006
, “
Activity Recognition of Assembly Tasks Using Body-Worn Microphones and Accelerometers
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
28
(
10
), pp.
1553
1567
.
6.
Stiefmeier
,
T.
,
Roggen
,
D.
,
Ogris
,
G.
,
Lukowicz
,
P.
, and
Tröster
,
G.
,
2008
, “
Wearable Activity Tracking in Car Manufacturing
,”
IEEE Pervasive Comput.
,
7
(
2
), pp.
42
50
.
7.
Huikari
,
V.
,
Koskimäki
,
H.
,
Siirtola
,
P.
, and
Röning
,
J.
,
2010
, “
User-Independent Activity Recognition for Industrial Assembly Lines-Feature vs. Instance Selection
,”
5th International Conference on Pervasive Computing and Applications.
,
Maribor, Slovenia
,
Dec. 1–3
, pp.
307
312
.
8.
Koskimaki
,
H.
,
Huikari
,
V.
,
Siirtola
,
P.
,
Laurinen
,
P.
, and
Roning
,
J.
,
2009
, “
Activity Recognition Using a Wrist-Worn Inertial Measurement Unit: A Case Study for Industrial Assembly Lines
,”
17th Mediterranean Conference on Control and Automation
,
Thessaloniki, Greece
,
July 14
, pp.
401
405
.
9.
Tao
,
W.
,
Lai
,
Z.-H.
,
Leu
,
M. C.
, and
Yin
,
Z.
,
2018
, “
Worker Activity Recognition in Smart Manufacturing Using IMU and sEMG Signals With Convolutional Neural Networks
,”
Procedia Manuf.
,
26
, pp.
1159
1166
.
10.
Ibarguren
,
A.
,
Maurtua
,
I.
,
Susperregi
,
L.
, and
Sierra
,
B.
,
2006
, “
Machine Learning Algorithms for Task Identification
,”
3rd International Forum on Applied Wearable Computing 2006
,
Bremen, Germany
,
Mar. 15–16
, pp.
1
7
.
11.
Matthies
,
D. J. C.
,
Bieber
,
G.
, and
Kaulbars
,
U.
,
2016
, “
AGIS: Automated Tool Detection & Hand-Arm Vibration Estimation Using an Unmodified Smartwatch
,”
iWOAR ‘16: 3rd International Workshop on Sensor-Based Activity Recognition and Interaction
,
Rostock, Germany
,
June 23–24
, pp.
1
4
.
12.
Aiello
,
G.
,
Certa
,
A.
,
Abusohyon
,
I.
,
Longo
,
F.
, and
Padovano
,
A.
,
2021
, “
Machine Learning Approach Towards Real Time Assessment of Hand-Arm Vibration Risk
,”
IFAC-PapersOnLine
,
54
(
1
), pp.
1187
1192
.
13.
Liu
,
C. H.
,
Chen
,
A.
,
Chen
,
C.-C.
, and
Wang
,
Y.-T.
,
2005
, “
Grinding Force Control in an Automatic Surface Finishing System
,”
J. Mater. Process. Technol.
,
170
(
1–2
), pp.
367
373
.
14.
Dieste
,
J. A.
,
Fernández
,
A.
,
Roba
,
D.
,
Gonzalvo
,
B.
, and
Lucas
,
P.
,
2013
, “
Automatic Grinding and Polishing Using Spherical Robot
,”
Procedia Eng.
,
63
, pp.
938
946
.
15.
Huang
,
H.
,
Gong
,
Z.
,
Chen
,
X.
, and
Zhou
,
L.
,
2002
, “
Robotic Grinding and Polishing for Turbine-Vane Overhaul
,”
J. Mater. Process. Technol.
,
127
(
2
), pp.
140
145
.
16.
Bales
,
G.
,
Das
,
J.
,
Linke
,
B.
, and
Kong
,
Z.
,
2016
, “
Recognizing Gaze-Motor Behavioral Patterns in Manual Grinding Tasks
,”
44th Proceedings of the North American Manufacturing
,
Blacksburg, VA
,
June 27–July 1
, pp.
106
121
17.
Heinis
,
T. B.
,
Loy
,
C. L.
, and
Meboldt
,
M.
,
2018
, “
Improving Usage Metrics for Pay-per-Use Pricing With IoT Technology and Machine Learning
,”
Res. Technol. Manag.
,
61
(
5
), pp.
32
40
.
18.
Voet
,
H.
,
Altenhof
,
M.
,
Ellerich
,
M.
,
Schmitt
,
R. H.
, and
Linke
,
B.
,
2019
, “
A Framework for the Capture and Analysis of Product Usage Data for Continuous Product Improvement
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021010
.
19.
Dörr
,
M.
,
Ries
,
M.
,
Gwosch
,
T.
, and
Matthiesen
,
S.
,
2019
, “
Recognizing Product Application Based on Integrated Consumer Grade Sensors: A Case Study With Handheld Power Tools
,”
29th CIRP Design Conference
,
Póvoa de Varzim, Portgal
,
May 8–10
, pp.
798
803
.
20.
Bales
,
G. L.
,
Das
,
J.
,
Tsugawa
,
J.
,
Linke
,
B.
, and
Kong
,
Z.
,
2017
, “
Digitalization of Human Operations in the Age of Cyber Manufacturing: Sensorimotor Analysis of Manual Grinding Performance
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101011
21.
Dörr
,
M.
,
Ott
,
L.
,
Matthiesen
,
S.
, and
Gwosch
,
T.
,
2021
, “
Prediction of Tool Forces in Manual Grinding Using Consumer-Grade Sensors and Machine Learning
,”
Sensors
,
21
(
21
), p.
7147
.
22.
Dörr
,
M.
,
Peters
,
J.
, and
Matthiesen
,
S.
,
2021
, “
Data-Driven Analysis of Human-Machine Systems—A Data Logger and Possible Use Cases for Field Studies With Cordless Power Tools
,”
International Conference on Human Interaction and Emerging Technologies
,
Paris, France
,
Aug. 27–29
, pp.
56
62
.
23.
Matthiesen
,
S.
,
Dörr
,
M.
, and
Zimprich
,
S.
,
2018
, “
Testfallgenerierung—Vorgehen zur Lastkollektivermittlung Durch Data Mining am Winkelschleifer
,”
Design for X—Proceedings of the 29th Symposium
,
Tutzing, Germany
,
Sept. 25–26
, pp.
295
306
.
24.
Nurwulan
,
N.
, and
Jiang
,
B. C.
,
2020
, “
Window Selection Impact in Human Activity Recognition
,”
Int. J. Innov. Technol. Interdiscip. Sci.
,
3
(
1
), pp.
381
394
.
25.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology
, 2nd ed.,
Industrial Press
,
New York
.
26.
Ding
,
C.
, and
Peng
,
H.
,
2005
, “
Minimum Redundancy Feature Selection From Microarray Gene Expression Data
,”
J. Bioinf. Comput. Biol.
,
3
(
2
), pp.
185
205
.
27.
Allwein
,
E. L.
,
Schapire
,
R. E.
, and
Singer
,
Y.
,
2000
, “
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
,”
J. Mach. Learn. Res.
,
1
, pp.
113
141
.
28.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
29.
Efstratiou
,
C.
,
Davies
,
N.
,
Kortuem
,
G.
,
Finney
,
J.
,
Hooper
,
R.
, and
Lowton
,
M.
,
2007
, “
Experiences of Designing and Deploying Intelligent Sensor Nodes to Monitor Hand-Arm Vibrations in the Field
,”
Proceedings of the 5th International Conference on Mobile Systems, Applications and Services
,
San Juan, Puerto Rico
,
June 11–13
, pp.
127
138
.
30.
Matthies
,
D. J. C.
,
Haescher
,
M.
,
Bieber
,
G.
, and
Nanayakkara
,
S.
,
2019
, “
Hand-Arm Vibration Estimation Using a Commercial Smartwatch
,”
International Conference on Hand-Arm Vibration
,
Bonn, Germany
,
May 21–24
, pp.
107
108
.
You do not currently have access to this content.