Abstract

Two-photon lithography (TPL) is a polymerization-based direct laser writing process that is capable of fabricating arbitrarily complex three-dimensional (3D) structures with submicron features. Traditional TPL techniques have limited scalability due to the slow point-by-point serial writing scheme. The femtosecond projection TPL (FP-TPL) technique increases printing rate by a thousand times by enabling layer-by-layer parallelization. However, parallelization alters the time and the length scales of the underlying polymerization process. It is therefore challenging to apply the models of serial TPL to accurately predict process outcomes during FP-TPL. To solve this problem, we have generated a finite element model of the polymerization process on the time and length scales relevant to FP-TPL. The model is based on the reaction-diffusion mechanism that underlies polymerization. We have applied this model to predict the geometry of nanowires printed under a variety of conditions and compared these predictions against empirical data. Our model accurately predicts the nanowire widths. However, accuracy of aspect ratio prediction is hindered by uncertain values of the chemical properties of the photopolymer. Nevertheless, our results demonstrate that the reaction-diffusion model can accurately capture the effect of controllable parameters on FP-TPL process outcome and can therefore be used for process control and optimization.

References

1.
Wu
,
S.
,
Serbin
,
J.
, and
Gu
,
M.
,
2006
, “
Two-Photon Polymerisation for Three-Dimensional Micro-Fabrication
,”
J. Photochem. Photobiol. A: Chem.
,
181
(
1
), pp.
1
11
.
2.
Baldacchini
,
T.
,
2015
,
Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications
,
William Andrew
,
Waltham, MA
.
3.
Sun
,
H.-B.
, and
Kawata
,
S.
,
2004
, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,”
NMR• 3D Analysis• Photopolymerization
,
Springer
,
New York
, pp.
169
-
273
.
4.
Juodkazis
,
S.
,
Mizeikis
,
V.
, and
Misawa
,
H.
,
2009
, “
Three-Dimensional Microfabrication of Materials by Femtosecond Lasers for Photonics Applications
,”
J. Appl. Phys.
,
106
(
5
), p.
051101
.
5.
Meza
,
L.
,
Das
,
S.
, and
Greer
,
J.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.
6.
Oakdale
,
J. S.
,
Smith
,
R. F.
,
Forien
,
J. B.
,
Smith
,
W. L.
,
Ali
,
S. J.
,
Bayu Aji
,
L. B.
,
Willey
,
T. M.
,
Ye
,
J.
,
van Buuren
,
A. W.
,
Worthington
,
M. A.
,
Prisbrey
,
S. T.
,
Park
,
H.
,
Amendt
,
P. A.
,
Baumann
,
T. F.
, and
Biener
,
J.
,
2017
, “
Direct Laser Writing of Low-Density Interdigitated Foams for Plasma Drive Shaping
,”
Adv. Funct. Mater.
,
27
(
43
), p.
1702425
.
7.
Gissibl
,
T.
,
Thiele
,
S.
,
Herkommer
,
A.
, and
Giessen
,
H.
,
2016
, “
Two-Photon Direct Laser Writing of Ultracompact Multi-Lens Objectives
,”
Nat. Photonics
,
10
(
8
), pp.
554
560
.
8.
Tian
,
Y.
,
Kwon
,
H.
,
Shin
,
Y. C.
, and
King
,
G. B.
,
2014
, “
Fabrication and Characterization of Photonic Crystals in Photopolymer sz2080 by Two-Photon Polymerization Using a Femtosecond Laser
,”
ASME J. Micro Nano-Manuf.
,
2
(
3
), p.
034501
.
9.
Huang
,
T. Y.
,
Sakar
,
M. S.
,
Mao
,
A.
,
Petruska
,
A. J.
,
Qiu
,
F.
,
Chen
,
X. B.
,
Kennedy
,
S.
,
Mooney
,
D.
, and
Nelson
,
B. J.
,
2015
, “
3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents
,”
Adv. Mater.
,
27
(
42
), pp.
6644
6650
.
10.
Sima
,
F.
,
Sugioka
,
K.
,
Vázquez
,
R.
,
Osellame
,
R.
,
Kelemen
,
L.
, and
Ormos
,
P.
,
2018
, “
Three-Dimensional Femtosecond Laser Processing for Lab-on-a-Chip Applications
,”
Nanophotonics
,
7
(
3
), pp.
613
634
.
11.
Schade
,
R.
,
Weiß
,
T.
,
Berg
,
A.
,
Schnabelrauch
,
M.
, and
Liefeith
,
K.
,
2018
, “
Two-Photon Techniques in Tissue Engineering
,”
Int. J. Artif. Organs
,
33
(
4
), pp.
219
227
.
12.
Amato
,
L.
,
Gu
,
Y.
,
Bellini
,
N.
,
Eaton
,
S.
,
Cerullo
,
G.
, and
Osellame
,
R.
,
2012
, “
Integrated Three-Dimensional Filter Separates Nanoscale From Microscale Elements in a Microfluidic Chip
,”
Lab Chip
,
12
(
6
), p.
1135
.
13.
Saha
,
S. K.
,
Wang
,
D.
,
Nguyen
,
V.
,
Chang
,
Y.
,
Oakdale
,
J.
, and
Chen
,
S.
,
2019
, “
Scalable Submicrometer Additive Manufacturing
,”
Science
,
366
(
6461
), pp.
105
109
.
14.
Jonušauskas
,
L.
,
Juodkazis
,
S.
, and
Malinauskas
,
M.
,
2018
, “
Optical 3D Printing: Bridging the Gaps in the Mesoscale
,”
J. Opt.
,
20
(
5
), p.
053001
.
15.
Andrzejewska
,
E.
,
2019
,
Three-Dimensional Microfabrication Using Two-Photon Polymerization
,
T
.
Baldacchini
, ed.,
William Andrew
,
Cambridge, MA
, pp.
77
99
.
16.
Jariwala
,
A.
,
Ding
,
F.
,
Boddapati
,
A.
,
Breedveld
,
V.
,
Grover
,
M.
,
Henderson
,
C.
, and
Rosen
,
D.
,
2011
, “
Modeling Effects of Oxygen Inhibition in Mask-Based Stereolithography
,”
Rapid Prototyp. J.
,
17
(
3
), pp.
168
175
.
17.
Saha
,
S. K.
,
Divin
,
C.
,
Cuadra
,
J. A.
, and
Panas
,
R. M.
,
2017
, “
Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing via Two-Photon Polymerization
,”
ASME J. Micro Nano-Manuf.
,
5
(
3
), p.
031002
.
18.
Mueller
,
J.
,
Fischer
,
J.
,
Mayer
,
F.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2014
, “
Polymerization Kinetics in Three-Dimensional Direct Laser Writing
,”
Adv. Mater.
,
26
(
38
), pp.
6566
6571
.
20.
Kim
,
H.
, and
Saha
,
S. K.
,
2020
, “
Defect Control During Femtosecond Projection Two-Photon Lithography
,”
Procedia Manuf.
,
48
, pp.
650
655
.
21.
Rumi
,
M.
,
Ehrlich
,
J.
,
Heikal
,
A.
,
Perry
,
J.
,
Barlow
,
S.
,
Hu
,
Z.
,
McCord-Maughon
,
D.
,
Parker
,
T.
,
Röckel
,
H.
,
Thayumanavan
,
S.
,
Marder
,
S.
,
Beljonne
,
D.
, and
Brédas
,
J.
,
2000
, “
Structure−Property Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(Styryl)Benzene Derivatives
,”
J. Am. Chem. Soc.
,
122
(
39
), pp.
9500
9510
.
You do not currently have access to this content.