Abstract

This paper presents a review of recent advances in modeling and simulation of conventional metal machining processes, which continue to dominate a significant part of all machining processes, and in recent years, the need for predictive models for machining processes has grown in importance in the digital manufacturing age. Significant advances have been made in modeling the mechanics of cutting in conventional machining, driven by industrial need and enabled by rapid advances in computational power. The paper surveys the state-of-the-art in analytical and numerical modeling of conventional metal machining processes with a focus on their ability to predict useful performance attributes including chip geometry, forces, temperatures, tool wear, residual stress, and microstructure. Also included in the review is a discussion of the industrial use of modeling and simulation tools for conventional machining. Additionally, the practical applicability, implementation benefits, and methodological limitations of conventional machining process modeling have been examined. The paper concludes with a summary of future research directions in modeling and simulation of conventional metal machining processes.

References

1.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal Cutting Process
,”
ASME J. Appl. Mech.
,
11
(
3
), pp.
A168
A175
.
2.
Jawahir
,
I. S.
, and
Jayal
,
A. D.
,
2011
, “Product and Process Innovation for Modeling of Sustainable Machining Processes,”
Advances in Sustainable Manufacturing
,
G.
Seliger
,
M.
Khraisheh
, and
I.
Jawahir
, eds.,
Springer
,
Berlin/Heidelberg
.
3.
Jawahir
,
I. S.
,
Schoop
,
J.
,
Kaynak
,
Y.
,
Balaji
,
A. K.
,
Ghosh
,
R.
, and
Lu
,
T.
,
2020
, “
Progress Toward Modeling and Optimization of Sustainable Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110811
.
4.
Ehmann
,
K. F.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Lazoglu
,
I.
,
1997
, “
Machining Process Modeling: A Review
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4B
), pp.
655
663
.
5.
Van Luttervelt
,
C. A.
,
Childs
,
T.
,
Jawahir
,
I. S.
,
Klocke
,
F.
, and
Venuvinod
,
P. K.
,
1998
, “
Present Situation and Future Trends in Modeling of Machining Operations Progress Report of the CIRP Working Group ‘Modeling of Machining Operations’
,”
CIRP Ann.
,
47
(
2
), pp.
587
626
.
6.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.
7.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I. S.
,
2013
, “
Recent Advances in Modeling of Metal Machining Processes
,”
CIRP Ann.
,
62
(
2
), pp.
695
718
.
8.
Astakhov
,
V. P.
,
1999
,
Metal Cutting Mechanics
,
CRC Press
,
Boca Raton
.
9.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
,
18
(
4
), pp.
405
413
.
10.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
Oxford, UK
.
11.
Hill
,
R.
,
1954
, “
The Mechanics of Machining: A New Approach
,”
J. Mech. Phys. Solids
,
3
(
1
), pp.
47
53
.
12.
Palmer
,
W. B.
, and
Oxley
,
P. L. B.
,
1959
, “
Mechanics of Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
173
(
1
), pp.
623
654
.
13.
Roth
,
R. N.
, and
Oxley
,
P. L. B.
,
1972
, “
Slip-Line Field Analysis for Orthogonal Machining Based Upon Experimental Flow Fields
,”
J. Mech. Eng. Sci.
,
14
(
2
), pp.
85
97
.
14.
Oxley
,
P. L. B.
, and
Welsh
,
M. J. M.
,
1964
, “
Calculating the Shear Angle in Orthogonal Metal Cutting From Fundamental Stress/Strain/Strain-Rate Properties of the Work Material
,”
Proceedings of the 4th MTDR Conference
,
Manchester, UK
, pp.
1
9
.
15.
Oxley
,
P. L. B.
, and
Welsh
,
M. J. M.
,
1967
, “
An Explanation of the Apparent Bridgman Effect in Merchant's Orthogonal Cutting Results
,”
ASME J. Eng. Ind.
,
89
(
3
), pp.
549
555
.
16.
Oxley
,
P. L. B.
,
1989
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood Limited
,
Chichester, England
.
17.
Dudzinski
,
D.
, and
Molinari
,
A.
,
1997
, “
A Modelling of Cutting for Viscoplastic Materials
,”
Int. J. Mech. Sci.
,
39
(
4
), pp.
369
389
.
18.
Moufki
,
A.
,
Molinari
,
A.
, and
Dudzinski
,
D.
,
1998
, “
Modelling of Orthogonal Cutting With a Temperature Dependent Friction Law
,”
J. Mech. Phys. Solids
,
46
(
10
), pp.
2103
2138
.
19.
Johnson
,
W.
,
1962
, “
Some Slip-Line Fields for Swaging or Expanding Indenting, Extruding and Machining for Tools With Curved Dies
,”
Int. J. Mech. Sci.
,
4
(
4
), pp.
323
347
.
20.
Usui
,
E.
, and
Hoshi
,
K.
,
1963
, “
Slip-Line Fields in Metal Machining Which Involve Centered Fans
,”
Proceedings of International Production Engineering Research Conference
,
ASME
,
Pittsburgh
, PA, pp.
61
71
.
21.
Kudo
,
H.
,
1965
, “
Some New Slip-Line Solutions for Two-Dimensional Steady-State Machining
,”
Int. J. Mech. Sci.
,
7
(
1
), pp.
43
55
.
22.
Dewhurst
,
P.
,
1978
, “
On the Non-Uniqueness of the Machining Process
,”
Proc. R. Soc. London, Ser. A
,
360
(
1703
), pp.
587
610
.
23.
Jawahir
,
I. S.
,
1986
, “
An Experimental and Theoretical Study of the Effects of Tool Restricted Contact on Chip Breaking
,”
Ph.D. thesis
,
University of New South Wales
,
Sydney, Australia
.
24.
Shi
,
T.
, and
Ramalingam
,
S.
,
1991
, “
Slip-Line Solution for Orthogonal Cutting With a Chip Breaker and Flank Wear
,”
Int. J. Mech. Sci.
,
33
(
9
), pp.
689
704
.
25.
Fang
,
N.
,
Jawahir
,
I. S.
, and
Oxley
,
P. L. B.
,
2001
, “
A Universal Slip-Line Model With Non-Unique Solutions for Machining With Curled Chip Formation and a Restricted Contact Tool
,”
Int. J. Mech. Sci.
,
43
(
2
), pp.
557
580
.
26.
Fang
,
N.
, and
Jawahir
,
I. S.
,
2002
, “
Analytical Predictions and Experimental Validation of Cutting Force Ratio, Chip Thickness, and Chip Back-Flow Angle in Restricted Contact Machining Using the Universal Slip-Line Model
,”
Int. J. Mach. Tools Manuf.
,
42
(
6
), pp.
681
694
.
27.
Fang
,
N.
, and
Jawahir
,
I. S.
,
2002
, “
An Analytical Predictive Model and Experimental Validation for Machining with Grooved Tools Incorporating the Effects of Strains, Strain-Rates, and Temperatures
,”
CIRP Ann.
,
51
(
1
), pp.
83
86
.
28.
Fang
,
N.
, and
Jawahir
,
I. S.
,
2003
, “
Analytical Prediction of the Chip Back-Flow Angle in Machining With Restricted Grooved Tools
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
210
219
.
29.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool-Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
715
742
.
30.
Wang
,
X.
,
2005
, “Predictive Modeling and Simulation of 3-D Cyclic Chip Formation Process in Dry Machining Operations using Slip-line Models,”
Ph.D. Thesis, University of Kentucky
.
31.
Karpat
,
Y.
, and
Özel
,
T.
,
2008
, “
Analytical and Thermal Modeling of High-Speed Machining With Chamfered Tools
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011001
.
32.
Ren
,
H.
, and
Altintas
,
Y.
,
2000
, “
Mechanics of Machining With Chamfered Tools
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
650
659
.
33.
Jin
,
X.
, and
Altintas
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
.
34.
Uysal
,
A.
, and
Altan
,
E.
,
2014
, “
Experimental Investigation of a Slip-Line Field Model for a Worn Cutting Tool
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
8
), pp.
1398
1404
.
35.
Manyindo
,
B. M.
, and
Oxley
,
P. L. B.
,
1986
, “
Modeling the Catastrophic Shear Type of Chip When Machining Stainless Steel
,”
Proc. Inst. Mech. Eng., Part C
,
200
(
5
), pp.
349
358
.
36.
Uysal
,
A.
, and
Jawahir
,
I. S.
,
2019
, “
A Slip-Line Model for Serrated Chip Formation in Machining of Stainless Steel and Validation
,”
Int. J. Adv. Manuf. Technol.
,
101
(
9–12
), pp.
2449
2464
.
37.
Uysal
,
A.
, and
Jawahir
,
I. S.
,
2019
, “
Validation of the Slip-Line Model for Serrated Chip Formation in Orthogonal Turning Under Dry and MQL Conditions
,”
Proc. CIRP
,
82
, pp.
124
129
.
38.
Shi
,
B.
,
Attia
,
H.
, and
Tounsi
,
N.
,
2010
, “
Identification of Material Constitutive Laws for Machining—Part I: An Analytical Model Describing the Stress, Strain, Strain rate, and Temperature Fields in the Primary Shear Zone in Orthogonal Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051009
.
39.
Young
,
H.
,
Mathew
,
P.
, and
Oxley
,
P. L. B.
,
1994
, “
Predicting Cutting Forces in Face Milling
,”
Int. J. Mach. Tools Manuf.
,
34
(
6
), pp.
771
783
.
40.
Li
,
X. P.
,
Nee
,
A. Y. C.
,
Wong
,
Y. S.
, and
Zheng
,
H. Q.
,
1999
, “
Theoretical Modeling and Simulation of Milling Forces
,”
J. Mater. Process. Technol.
,
89–90
, pp.
266
272
.
41.
Li
,
H. Z.
,
Zhang
,
W. B.
, and
Li
,
X. P.
,
2001
, “
Modeling of Cutting Forces in Helical End Milling Using a Predictive Machining Theory
,”
Int. J. Mech. Sci.
,
43
(
8
), pp.
1711
1730
.
42.
Moufki
,
A.
,
Dudzinski
,
D.
,
Molinari
,
A.
, and
Rausch
,
M.
,
2000
, “
Thermoviscoplastic Modelling of Oblique Cutting: Forces and Chip Flow Predictions
,”
Int. J. Mech. Sci.
,
42
(
6
), pp.
1205
1232
.
43.
Moufki
,
A.
,
Devillez
,
A.
,
Dudzinski
,
D.
, and
Molinari
,
A.
,
2004
, “
Thermomechanical Modelling of Oblique Cutting and Experimental Validation
,”
Int. J. Mach. Tools Manuf.
,
44
(
9
), pp.
971
989
.
44.
Moufki
,
A.
,
Dudzinski
,
D.
, and
Le Coz
,
G.
,
2015
, “
Prediction of Cutting Forces From an Analytical Model of Oblique Cutting, Application to Peripheral Milling of Ti-6Al-4V Alloy
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
615
626
.
45.
Field
,
M.
, and
Kahles
,
J. F.
,
1971
, “
Review of Surface Integrity of Machined Components
,”
CIRP Ann.
,
20
(
2
), pp.
153
163
.
46.
Jacobus
,
K.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2000
, “
Machining-Induced Residual Stress: Experimentation and Modeling
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
20
31
.
47.
Lazoglu
,
I.
,
Ulutan
,
D.
,
Alaca
,
B. E.
, and
Engin
,
S.
,
2008
, “
An Enhanced Analytical Model for Residual Stress Prediction in Machining
,”
CIRP Ann.
,
57
(
1
), pp.
81
84
.
48.
Liang
,
S. Y.
, and
Su
,
J. C.
,
2007
, “
Residual Stress Modeling in Orthogonal Machining
,”
CIRP Ann.
,
56
(
1
), pp.
65
68
.
49.
Su
,
J. C.
,
Young
,
K. A.
,
Ma
,
K.
,
Srivatsa
,
S.
,
Morehouse
,
J. B.
, and
Liang
,
S. Y.
,
2013
, “
Modeling of Residual Stresses in Milling
,”
Int. J. Adv. Manuf. Technol.
,
65
(
5–8
), pp.
717
733
.
50.
Fergani
,
O.
,
Jiang
,
X.
,
Shao
,
Y.
,
Welo
,
T.
,
Yang
,
J.
, and
Liang
,
S. Y.
,
2016
, “
Prediction of Residual Stress Regeneration in Multi-Pass Milling
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
1153
1160
.
51.
Liang
,
X.
,
Liu
,
Z.
,
Wang
,
B.
, and
Hou
,
X.
,
2018
, “
Modeling of Plastic Deformation Induced by Thermo-Mechanical Stresses Considering Tool Flank Wear in High-Speed Machining Ti-6Al-4V
,”
Int. J. Mech. Sci.
,
140
, pp.
1
12
.
52.
Mirkoohi
,
E.
,
Bocchini
,
P.
, and
Liang
,
S. Y.
,
2019
, “
Inverse Analysis of Residual Stress in Orthogonal Cutting
,”
J. Manuf. Process.
,
38
, pp.
462
471
.
53.
Denkena
,
B.
,
Grove
,
T.
,
Dittrich
,
M. A.
,
Niederwestberg
,
D.
, and
Lahres
,
M.
,
2015
, “
Inverse Determination of Constitutive Equations and Cutting Force Modeling for Complex Tools Using Oxley's Predictive Machining Theory
,”
Proc. CIRP
,
31
, pp.
405
410
.
54.
Mirkoohi
,
E.
,
Bocchini
,
P.
, and
Liang
,
S. Y.
,
2018
, “
An Analytical Modeling for Process Parameter Planning in the Machining of Ti-6Al-4V for Force Specifications Using an Inverse Analysis
,”
Int. J. Adv. Manuf. Technol.
,
98
(
9–12
), pp.
2347
2355
.
55.
Mirkoohi
,
E.
,
Bocchini
,
P.
, and
Liang
,
S. Y.
,
2019
, “
Analytical Temperature Predictive Modeling and Non-Linear Optimization in Machining
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1557
1566
.
56.
Ji
,
X.
,
Zhang
,
X.
, and
Liang
,
S. Y.
,
2014
, “
Predictive Modeling of Residual Stress in Minimum Quantity Lubrication Machining
,”
Int. J. Adv. Manuf. Technol.
,
70
(
9–12
), pp.
2159
2168
.
57.
Li
,
B.
,
Jiang
,
X.
,
Yang
,
J.
, and
Liang
,
S. Y.
,
2015
, “
Effects of Depth of Cut on the Redistribution of Residual Stress and Distortion During the Milling of Thin-Walled Part
,”
J. Mater. Process. Technol.
,
216
, pp.
223
233
.
58.
Chou
,
Y. K.
, and
Evans
,
C. J.
,
1997
, “
Tool Wear Mechanism in Continuous Cutting of Hardened Tool Steels
,”
Wear
,
212
(
1
), pp.
59
65
.
59.
Usui
,
E.
,
Shirakashi
,
T.
, and
Kitagawa
,
T.
,
1978
, “
Analytical Prediction of Three Dimensional Cutting Process-Part 3: Cutting Temperature and Crater Wear of Carbide Tool
,”
100
(
6
), pp.
236
243
.
60.
Takeyama
,
H.
, and
Murata
,
R.
,
1963
, “
Basic Investigation of Tool Wear
,”
ASME J. Eng. Ind.
,
85
(
1
), pp.
33
37
.
61.
Kannatey-Asibu
,
E.
,
1985
, “
A Transport-Diffusion Equation in Metal Cutting and Its Application to Analysis of the Rate of Flank Wear
,”
ASME J. Eng. Ind.
,
107
(
1
), pp.
81
89
.
62.
Molinari
,
A.
, and
Nouari
,
M.
,
2002
, “
Modeling of Tool Wear by Diffusion in Metal Cutting
,”
Wear
,
252
(
1–2
), pp.
135
149
.
63.
Hua
,
J.
, and
Shivpuri
,
R.
,
2005
, “
A Cobalt Diffusion Based Model for Predicting Crater Wear of Carbide Tools in Machining Titanium Alloy
,”
ASME J. Eng. Mater. Technol.
,
127
(
1
), pp.
136
144
.
64.
Bahi
,
S.
,
Nouari
,
M.
,
Moufki
,
A.
,
El Mansori
,
M.
, and
Molinari
,
A.
,
2012
, “
Hybrid Modelling of Sliding-Sticking Zones at the Tool-Chip Interface Under Dry Machining and Tool Wear Analysis
,”
Wear
,
286–287
, pp.
45
54
.
65.
Huang
,
Y.
, and
Liang
,
S. Y.
,
2004
, “
Modeling of CBN Tool Flank Wear Progression in Finish Hard Turning
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
98
106
.
66.
Giménez
,
S.
,
Van der Biest
,
O.
, and
Vleugels
,
J.
,
2007
, “
The Role of Chemical Wear in Machining Iron Based Materials by PCD and PCBN Super-Hard Tool Materials
,”
Diam. Relat. Mater.
,
16
(
3
), pp.
435
445
.
67.
Shimada
,
S.
,
Tanaka
,
H.
,
Higuchi
,
M.
,
Yamaguchi
,
T.
,
Honda
,
S.
, and
Obata
,
K.
,
2004
, “
Thermo-Chemical Wear Mechanism of Diamond Tool in Machining of Ferrous Metals
,”
CIRP Ann.
,
53
(
1
), pp.
57
60
.
68.
Zou
,
L.
,
Yin
,
J.
,
Huang
,
Y.
, and
Zhou
,
M.
,
2018
, “
Essential Causes for Tool Wear of Single Crystal Diamond in Ultra-Precision Cutting of Ferrous Metals
,”
Diam. Relat. Mater.
,
86
, pp.
29
40
.
69.
Malakizadi
,
A.
,
Shi
,
B.
,
Hoier
,
P.
,
Attia
,
H.
, and
Krajnik
,
P.
,
2020
, “
Physics-Based Approach for Predicting Dissolution-Diffusion Tool Wear in Machining
,”
CIRP Ann.
,
69
(
1
), pp.
81
84
.
70.
Wang
,
J.
,
Yan
,
J.
,
Li
,
C.
,
Gao
,
R. X.
, and
Zhao
,
R.
,
2019
, “
Deep Heterogeneous GRU Model for Predictive Analytics in Smart Manufacturing: Application to Tool Wear Prediction
,”
Comput. Ind.
,
111
, pp.
1
14
.
71.
Wang
,
J.
,
Li
,
Y.
,
Zhao
,
R.
, and
Gao
,
R. X.
,
2020
, “
Physics Guided Neural Network for Machining Tool Wear Prediction
,”
J. Manuf. Syst.
,
57
, pp.
298
310
.
72.
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Zhu
,
R.
,
Gajjela
,
R.
,
Parakkal
,
G.
, and
Smithey
,
D.
,
1998
, “
Development of Mechanistic Models for the Prediction of Machining Performance: Model Building Methodology
,”
Mach. Sci. Technol.
,
2
(
2
), pp.
213
238
.
73.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
(
1
), pp.
357
362
.
74.
Park
,
S. S.
, and
Malekian
,
M.
,
2009
, “
Mechanistic Modeling and Accurate Measurement of Micro End Milling Forces
,”
CIRP Ann.
,
58
(
1
), pp.
49
52
.
75.
Jun
,
M. B.
,
Goo
,
C.
,
Malekian
,
M.
, and
Park
,
S.
,
2012
, “
A New Mechanistic Approach for Micro End Milling Force Modeling
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011006
.
76.
Tuysuz
,
O.
,
Altintas
,
Y.
, and
Feng
,
H.-Y.
,
2013
, “
Prediction of Cutting Forces in Three and Five-Axis Ball-End Milling With Tool Indentation Effect
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
66
81
.
77.
Erkorkmaz
,
K.
,
Katz
,
A.
,
Hosseinkhani
,
Y.
,
Plakhotnik
,
D.
,
Stautner
,
M.
, and
Ismail
,
F.
,
2016
, “
Chip Geometry and Cutting Forces in Gear Shaping
,”
CIRP Ann.
,
65
(
1
), pp.
133
136
.
78.
Khoshdarregi
,
M. R.
, and
Altintas
,
Y.
,
2015
, “
Generalized Modeling of Chip Geometry and Cutting Forces in Multi-Point Thread Turning
,”
Int. J. Mach. Tools Manuf.
,
98
, pp.
21
32
.
79.
Wan
,
M.
, and
Altintas
,
Y.
,
2014
, “
Mechanics and Dynamics of Thread Milling Process
,”
Int. J. Mach. Tools Manuf.
,
87
, pp.
16
26
.
80.
Comak
,
A.
, and
Altintas
,
Y.
,
2017
, “
Mechanics of Turn-Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
2
9
.
81.
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2016
, “
Generalized Mechanics and Dynamics of Metal Cutting Operations for Unified Simulations
,”
Int. J. Mach. Tools Manuf.
,
104
, pp.
1
13
.
82.
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2016
, “
Generalized Modeling of Cutting Tool Geometries for Unified Process Simulation
,”
Int. J. Mach. Tools Manuf.
,
104
, pp.
14
25
.
83.
Chandrasekharan
,
V.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
1995
, “
A Mechanistic Approach to Predicting the Cutting Forces in Drilling: With Application to Fiber-Reinforced Composite Materials
,”
ASME J. Eng. Ind.
,
117
(
4
), pp.
559
570
.
84.
Wang
,
J. J.
,
Book
,
W.
, and
Liang
,
S. Y.
,
1994
, “
Convolution Analysis of Milling Force Pulsation
,”
ASME J. Eng. Ind.
,
116
(
1
), pp.
17
25
.
85.
Chiou
,
Y. S.
,
Zheng
,
L.
, and
Liang
,
S. Y.
,
1996
, “
Three Dimensional Cutting Force Analysis in End Milling
,”
Int. J. Mech. Sci.
,
38
(
3
), pp.
259
269
.
86.
Zheng
,
L.
,
Li
,
Y.
, and
Liang
,
S. Y.
,
1997
, “
A Generalised Model of Milling Forces
,”
Int. J. Adv. Manuf. Technol.
,
14
(
3
), pp.
160
171
.
87.
Zheng
,
L.
, and
Liang
,
S. Y.
,
1997
, “
Identification of Cutter Axis Tilt in End Milling
,”
ASME J. Eng. Ind.
,
119
(
2
), pp.
178
185
.
88.
Wang
,
J. J.
, and
Liang
,
S. Y.
,
1996
, “
Chip Load Kinematics in Milling With Radial Cutter Runout
,”
ASME J. Eng. Ind.
,
118
(
1
), pp.
111
116
.
89.
Wang
,
J. J.
, and
Liang
,
S. Y.
,
1994
, “
Milling Force Convolution Modeling for Identification of Cutter Axis Offset
,”
Int. J. Mach. Tools Manuf.
,
34
(
8
), pp.
1177
1190
.
90.
Wang
,
J. J.
,
Herman
,
P. A.
, and
Liang
,
S. Y.
,
1993
, “
Surface Finish Enhancement in Milling via Inverse Runout Trajectory Following of Workpiece
,”
Trans. NAMRI, SME
, pp.
103
109
.
91.
Liang
,
S. Y.
, and
Zheng
,
L.
,
1998
, “
End Milling System Compliance and Machining Error
,”
Mach. Sci. Technol.
,
2
(
1
), pp.
41
56
.
92.
Su
,
J. C.
,
Young
,
K. A.
,
Ma
,
K.
,
Srivasta
,
S.
,
Morehouse
,
J. B.
, and
Liang
,
S. Y.
, III
,
2013
, “
Modeling of Residual Stresses in Milling
,”
Int. J. Adv. Manuf. Technol.
,
65
(
5
), pp.
717
733
.
93.
Strenkowski
,
J. S.
, and
Carroll
,
J. T.
, III
,
1985
, “
A Finite Element Model of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
107
(
4
), pp.
349
354
.
94.
Komvopoulos
,
K.
, and
Erpenbeck
,
S. A.
,
1991
, “
Finite Element Modeling of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
113
(
3
), pp.
253
267
.
95.
Shih
,
A. J.
, and
Yang
,
H. T. Y.
,
1993
, “
Experimental and Finite Element Predictions of Residual Stresses Due to Orthogonal Metal Cutting
,”
Int. J. Num. Methods Eng.
,
36
(
9
), pp.
1487
1507
.
96.
Marusich
,
T. D.
, and
Ortiz
,
M.
,
1995
, “
Modeling and Simulation of High-Speed Machining
,”
Int. J. Numer. Meth. Eng.
,
38
(
21
), pp.
3675
3694
.
97.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy-Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
208
215
.
98.
Ceretti
,
E.
,
Fallböhmer
,
P.
,
Wu
,
W. T.
, and
Altan
,
T.
,
1996
, “
Application of 2D FEM to Chip Formation in Orthogonal Cutting
,”
J. Mater. Process. Technol.
,
59
(
1–2
), pp.
169
180
.
99.
Ceretti
,
E.
,
Lazzaroni
,
C.
,
Menegardo
,
L.
, and
Altan
,
T.
,
2000
, “
Turning Simulations Using a Three-Dimensional FEM Code
,”
J. Mater. Process. Technol.
,
98
(
1
), pp.
99
103
.
100.
Madhavan
,
V.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
,
2000
, “
Machining as a Wedge Indentation
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
128
139
.
101.
Dirikolu
,
M. H.
,
Childs
,
T. H. C.
, and
Maekawa
,
K.
,
2001
, “
Finite Element Simulation of Chip Flow in Metal Machining
,”
Int. J. Mech. Sci.
,
43
(
11
), pp.
2699
2713
.
102.
Abouridouane
,
M.
,
Klocke
,
F.
,
Lung
,
D.
, and
Adams
,
O.
,
2012
, “
A New 3D Multiphase FE Model for Micro Cutting Ferritic-Pearlitic Carbon Steels
,”
CIRP Ann.
,
61
(
1
), pp.
71
74
.
103.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
,
Beaudoin
,
A. J.
, and
Bammann
,
D. J.
,
2003
, “
Machining Simulation of Ductile Iron and Its Constituents, Part 1: Estimation of Material Model Parameters and Their Validation
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
181
191
.
104.
Caruso
,
S.
,
Di Renzo
,
S.
,
Dillon
,
O. W.
,
Umbrello
,
D.
,
Jayal
,
A. D.
, and
Jawahir
,
I. S.
,
2011
, “
Finite Element Modeling of Microstructural Changes in Hard Turning of AISI 52100 Steel
,”
Adv. Mat. Res.
,
223
, pp.
960
969
.
105.
Outeiro
,
J. C.
,
Umbrello
,
D.
, and
M’saoubi
,
R.
,
2006
, “
Experimental and Numerical Modeling of the Residual Stresses Induced in Orthogonal Cutting of AISI 316L Steel
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1786
1794
.
106.
Mondelin
,
A.
,
Valiorgue
,
F.
,
Rech
,
J.
,
Coret
,
M.
, and
Feulvarch
,
E.
,
2012
, “
Hybrid Model for the Prediction of Residual Stresses Induced by 15–5PH Steel Turning
,”
Int. J. Mech. Sci.
,
58
(
1
), pp.
69
85
.
107.
Baeker
,
M.
,
Roesler
,
J.
, and
Siemers
,
C.
,
2002
, “
Finite Element Simulation of Segmented Chip Formation of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
485
488
.
108.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.
109.
Özel
,
T.
,
Sima
,
M.
,
Srivastava
,
A. K.
, and
Kaftanoglu
,
B.
,
2010
, “
Investigations on the Effects of Multi-Layered Coated Inserts in Machining Ti-6Al-4V Alloy With Experiments and Finite Element Simulations
,”
CIRP Ann.
,
59
(
2
), pp.
77
82
.
110.
Lorentzon
,
J.
,
Järvstråt
,
N.
, and
Josefson
,
B. L.
,
2009
, “
Modeling Chip Formation of Alloy 718
,”
J. Mater. Process. Technol.
,
209
(
10
), pp.
4645
4653
.
111.
Özel
,
T.
,
Llanos
,
I.
,
Soriano
,
J.
, and
Arrazola
,
P. J.
,
2011
, “
3D Finite Element Modeling of Chip Formation Process for Machining Inconel 718: Comparison of FE Software Predictions
,”
Mach. Sci. Technol.
,
15
(
1
), pp.
21
46
.
112.
Arrazola
,
P. J.
, and
Özel
,
T.
,
2010
, “
Investigations on the Effects of Friction Modeling in Finite Element Simulation of Machining
,”
Int. J. Mech. Sci.
,
52
(
1
), pp.
31
42
.
113.
Abushawashi
,
Y.
,
Xiao
,
X.
, and
Astakhov
,
V. P.
,
2017
, “
Practical Applications of the “Energy–Triaxiality” State Relationship in Metal Cutting
,”
Mach. Sci. Technol.
,
21
(
1
), pp.
1
18
.
114.
Wang
,
B.
,
Xiao
,
X.
,
Astakhov
,
V. P.
, and
Liu
,
Z.
,
2019
, “
The Effects of Stress Triaxiality and Strain Rate on the Fracture Strain of Ti6Al4V
,”
Eng. Fract. Mech.
,
219
, p.
106627
.
115.
Vandana
,
A. S.
, and
Sundaram
,
N. K.
,
2018
, “
Simulation of Sinuous Flow in Metal Cutting
,”
Tribol. Lett.
,
66
(
3
), p.
94
.
116.
Wang
,
B.
, and
Liu
,
Z.
,
2016
, “
Evaluation on Fracture Locus of Serrated Chip Generation With Stress Triaxiality in High Speed Machining of Ti6Al4V
,”
Mater. Des.
,
98
, pp.
68
78
.
117.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2014
, “
Numerical Contribution to the Comprehension of Saw-Toothed Ti6Al4V Chip Formation in Orthogonal Cutting
,”
Int. J. Mech. Sci.
,
81
, pp.
77
87
.
118.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2016
, “
Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081001
.
119.
Wang
,
B.
, and
Liu
,
Z.
,
2015
, “
Shear Localization Sensitivity Analysis for Johnson-Cook Constitutive Parameters on Serrated Chips in High Speed Machining of Ti6Al4V
,”
Simul. Model. Pract. Th.
,
55
, pp.
63
76
.
120.
Childs
,
T. H. C.
,
Arrazola
,
P. J.
,
Aristimuno
,
P.
,
Garay
,
A.
, and
Sacristan
,
I.
,
2018
, “
Ti6Al4V Metal Cutting Chip Formation Experiments and Modeling Over a Wide Range of Cutting Speeds
,”
J. Mater. Process. Technol.
,
255
, pp.
898
913
.
121.
Rodríguez
,
J. M.
,
Carbonell
,
J. M.
, and
Jonsén
,
P.
,
2020
, “
Numerical Methods for the Modeling of Chip Formation
,”
Arch. Comput. Meth. Eng.
,
27
(
2
), pp.
387
412
.
122.
Limido
,
J.
,
Espinosa
,
C.
,
Salaün
,
M.
, and
Lacome
,
J. L.
,
2007
, “
SPH Method Applied to High Speed Cutting Modeling
,”
Int. J. Mech. Sci.
,
49
(
7
), pp.
898
908
.
123.
Calamaz
,
M.
,
Limido
,
J.
,
Nouari
,
M.
,
Espinosa
,
C.
,
Coupard
,
D.
,
Salaün
,
M.
,
Girot
,
F.
, and
Chieragatti
,
R.
,
2009
, “
Toward a Better Understanding of Tool Wear Effect Through a Comparison Between Experiments and SPH Numerical Modeling of Machining Hard Materials
,”
Int. J. Refract. Met. Hard Mater.
,
27
(
3
), pp.
595
604
.
124.
Xi
,
Y.
,
Bermingham
,
M.
,
Wang
,
G.
, and
Dargusch
,
M.
,
2014
, “
SPH/FE Modeling of Cutting Force and Chip Formation During Thermally Assisted Machining of Ti6Al4V Alloy
,”
Comput. Mater. Sci.
,
84
, pp.
188
197
.
125.
Ojal
,
N.
,
Cherukuri
,
H. P.
,
Schmitz
,
T. L.
, and
Jaycox
,
A. W.
,
2020
, “
A Comparison of Smoothed Particle Hydrodynamics (SPH) and Coupled SPH-FEM Methods for Modeling Machining
,”
Proceeding of ASME International Mech. Eng. Cong. Expos.
,
Paper No. 84485, p. VA02AT02A036
.
126.
Uhlmann
,
E.
,
Gerstenberger
,
R.
,
Graf von der Schulenburg
,
M.
,
Kuhnert
,
J.
, and
Mattes
,
A.
,
2009
, “
The Finite-Pointset-Method for the Meshfree Numerical Simulation
of
Chip Formation
,”
Proceedings of the 12th CIRP Conference on Modelleing of Machine Operations
,
San Sebastian, Spain
,
May 7–8
, Vol.
1
, pp.
145
151
.
127.
Uhlmann
,
E.
,
Gerstenberger
,
R.
, and
Kuhnert
,
J.
,
2013
, “
Cutting Simulation With the Meshfree Finite Pointset Method
,”
Proc. CIRP
,
8
, pp.
391
396
.
128.
Illoul
,
L.
, and
Lorong
,
P.
,
2011
, “
On Some Aspects of the CNEM Implementation in 3D in Order to Simulate High Speed Machining or Shearing
,”
Comput. Struct.
,
89
(
11–12
), pp.
940
958
.
129.
He
,
Y.
,
Zhang
,
J.
,
Qi
,
Y.
,
Liu
,
H.
,
Memon
,
A. R.
,
Zhao
, and
W.
,
2017
, “
Numerical Study of Microstructural Effects on Chip Formation in High Speed Cutting of Ductile Iron with Discrete Element Method
,”
J. Mater. Proc. Technol.
,
249
, pp.
291
301
.
130.
Belak
,
J.
, and
Stowers
,
I.
,
1990
, “
A Molecular Dynamics Model of the Orthogonal Cutting Process
, American Society of Photoptical Engineers (ASPE) Annual Conference,” Rochester, NY, Sept. 23–28.
131.
Komanduri
,
R.
, and
Raff
,
L.
,
2001
, “
A Review on the Molecular Dynamics Simulation of Machining at the Atomic Scale
,”
Proc. Inst. Mech. Eng., Part B
,
215
(
12
), pp.
1639
1672
.
132.
Cai
,
M. B.
,
Li
,
X. P.
, and
Rahman
,
M.
,
2007
, “
Study of the Mechanism of Nanoscale Ductile Mode Cutting of Silicon using Molecular Dynamics Simulation
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
75
80
.
133.
Chandrasekaran
,
N.
,
Khajavi
,
A. N.
,
Raff
,
L.
, and
Komanduri
,
R.
,
1998
, “
A New Method for Molecular Dynamics Simulation of Nanometric Cutting
,”
Philos. Mag. B
,
77
(
1
), pp.
7
26
.
134.
Narulkar
,
R.
,
Bukkapatnam
,
S.
,
Raff
,
L.
, and
Komanduri
,
R.
,
2009
, “
Graphitization as a Precursor to Wear of Diamond in Machining Pure Iron: A Molecular Dynamics Investigation
,”
Comput. Mater. Sci.
,
45
(
2
), pp.
358
366
.
135.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L.
,
2000
, “
MD Simulation of Nanometric Cutting of Single Crystal Aluminum-Effect of Crystal Orientation and Direction of Cutting
,”
Wear
,
242
(
1–2
), pp.
60
88
.
136.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L.
,
2001
, “
Molecular Dynamics Simulation of the Nanometric Cutting of Silicon
,”
Philos. Mag. B
,
81
(
12
), pp.
1989
2019
.
137.
Özel
,
T.
, and
Altan
,
T.
,
2000
, “
Determination of Workpiece Flow Stress and Friction at the Chip-Tool Contact for High Speed Cutting
,”
Int. J. Mach. Tools Manuf.
,
40
(
1
), pp.
133
152
.
138.
Melkote
,
S. N.
,
Grzesik
,
W.
,
Outeiro
,
J.
,
Rech
,
J.
,
Schulze
,
V.
,
Attia
,
H.
,
Arrazola
,
P. J.
,
M’Saoubi
,
R.
, and
Saldana
,
C.
,
2017
, “
Advances in Material and Friction Data for Modeling of Metal Machining
,”
CIRP Ann.
,
66
(
2
), pp.
779
802
.
139.
Wang
,
B.
,
Liu
,
Z.
,
Su
,
G.
, and
Ai
,
X.
,
2015
, “
Brittle Removal Mechanism of Ductile Materials with Ultrahigh-Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061002
.
140.
Fernandez-Zelaia
,
P.
,
Joseph
,
V. R.
,
Kalidindi
,
S. R.
, and
Melkote
,
S. N.
,
2018
, “
Estimating Mechanical Properties From Spherical Indentation Using Bayesian Approaches
,”
Mater. Des.
,
147
, pp.
92
105
.
141.
Fernandez-Zelaia
,
P.
, and
Melkote
,
S. N.
,
2019
, “
Statistical Calibration and Uncertainty Quantification of Complex Machining Computer Models
,”
Int. J. Mach. Tools Manuf.
,
136
, pp.
45
61
.
142.
Sung
,
J. H.
,
Kim
,
J. H.
, and
Wagoner
,
R. H.
,
2010
, “
A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature
,”
Int. J. Plast.
,
26
(
12
), pp.
1746
1771
.
143.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data
for
Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of 7th International Symposium on Ballistics
,
Hague, The Netherlands
, pp.
541
547
.
144.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
145.
Svoboda
,
A.
,
Wedberg
,
D.
, and
Lindgren
,
L. E.
,
2010
, “
Simulation of Metal Cutting Using a Physically Based Plasticity Model
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
7
), p.
075005
.
146.
Liu
,
R.
,
Melkote
,
S. N.
,
Pucha
,
R.
,
Morehouse
,
J.
,
Man
,
X.
, and
Marusich
,
T.
,
2013
, “
An Enhanced Constitutive Material Model for Machining of Ti-6Al-4V Alloy
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2238
2246
.
147.
Liu
,
R.
,
Salahshoor
,
M.
,
Melkote
,
S. N.
, and
Marusich
,
T.
,
2014
, “
The Prediction of Machined Surface Hardness Using a New Physics-Based Material Model
,”
Proc. CIRP
,
13
, pp.
249
256
.
148.
Fernandez-Zelaia
,
P.
,
Melkote
,
S. N.
,
Marusich
,
T.
, and
Usui
,
S.
,
2017
, “
A Microstructure Sensitive Grain Boundary Sliding and Slip Based Constitutive Model for Machining of Ti-6Al-4V
,”
Mech. Mater.
,
109
, pp.
67
81
.
149.
Wang
,
Q.
, and
Liu
,
Z.
,
2018
, “
Microhardness Prediction Based on a Microstructure-Sensitive Flow Stress Model During High Speed Machining Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091003
.
150.
Cheng
,
W.
,
Outeiro
,
J.
,
Costes
,
J. P.
,
M'Saoubi
,
R.
,
Karaouni
,
H.
, and
Astakhov
,
V. P.
,
2019
, “
A Constitutive Model for Ti6Al4V Considering the State of Stress and Strain Rate Effects
,”
Mech. Mater.
,
137
, p.
103103
.
151.
Zorev
,
N. N.
,
1963
, “
Interrelationship Between Shear Processes Occurring Along Tool Face and on Shear Plane in Metal Cutting
,”
Int. Res. Prod. Eng. ASME
, pp.
42
49
.
152.
Usui
,
E.
, and
Shirakashi
,
T.
,
1982
, “
Mechanics of Machining-From Descriptive to Predictive Theory
,”
On the Art of Cutting Metals-75 Years Later
,
ASME Publication PED
, Vol.
7
, pp.
13
35
.
153.
Jawahir
,
I. S.
,
Brinksmeier
,
E.
,
M'Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
,
2011
, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann.
,
60
(
2
), pp.
603
626
.
154.
Shih
,
A. J.
,
1995
, “
Finite Element Simulation of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
117
(
1
), pp.
84
93
.
155.
Shih
,
A. J.
,
1995
, “
Finite Element Analysis of the Rake Angle Effects in Orthogonal Metal Cutting
,”
Int. J. Mech. Sci.
,
38
(
1
), pp.
1
17
.
156.
Guo
,
Y. B.
,
Anurag
,
S.
, and
Jawahir
,
I. S.
,
2009
, “
A Novel Hybrid Predictive Model and Validation of Unique Hook-Shaped Residual Stress Profiles in Hard Turning
,”
CIRP Ann.
,
58
(
1
), pp.
81
84
.
157.
Miguélez
,
M. H.
,
Zaera
,
R.
,
Molinari
,
A.
,
Cheriguene
,
R.
, and
Rusinek
,
A.
,
2009
, “
Residual Stresses in Orthogonal Cutting of Metals: The Effect of Thermo Mechanical Coupling Parameters and of Friction
,”
J. Therm. Stress.
,
32
(
3
), pp.
269
289
.
158.
Özel
,
T.
, and
Ulutan
,
D.
,
2012
, “
Prediction of Machining Induced Residual Stresses in Turning of Titanium and Nickel Based Alloys With Experiments and Finite Element Simulations
,”
CIRP Ann.
,
61
(
1
), pp.
547
550
.
159.
Wang
,
F.
,
Liu
,
Z. Y.
,
Guo
,
Y. B.
,
Zhao
,
J.
, and
Liu
,
Z. Q.
,
2017
, “
Efficient Multiscale Modeling and Validation of Residual Stress Field in Cutting
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091004
.
160.
Valiorgue
,
F.
,
Rech
,
J.
,
Hamdi
,
H.
,
Gilles
,
P.
, and
Bergheau
,
J. M.
,
2012
, “
3D Modeling of Residual Stresses Induced in Finish Turning of an AISI 304L Stainless Steel
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
77
90
.
161.
Arısoy
,
Y. M.
, and
Özel
,
T.
,
2015
, “
Prediction of Machining Induced Microstructure in Ti-6Al-4V Alloy Using 3-D FE-Based Simulations: Effects of Tool Micro-Geometry, Coating and Cutting Conditions
,”
J. Mater. Process. Technol.
,
220
, pp.
1
26
.
162.
Yang
,
D.
,
Liu
,
Z.
,
Ren
,
X.
, and
Zhuang
,
P.
,
2016
, “
Hybrid Modeling With Finite Element and Statistical Methods for Residual Stress Prediction in Peripheral Milling of Titanium Alloy Ti-6Al-4V
,”
Int. J. Mech. Sci.
,
108–109
, pp.
29
38
.
163.
Schulze
,
V.
,
Autenrieth
,
H.
,
Deuchert
,
M.
, and
Weule
,
H.
,
2010
, “
Investigation of Surface Near Residual Stress States After Micro-Cutting by Finite Element Simulation
,”
CIRP Ann.
,
59
(
1
), pp.
117
120
.
164.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2006
, “
The Effect of Microstructure on Chip Formation and Surface Defects in Microscale, Mesoscale, and Macroscale Cutting of Steel
,”
CIRP Ann.
,
55
(
1
), pp.
97
102
.
165.
Fischer
,
C. E.
, and
Bandar
,
A. R.
,
2008
, “
Finite Element Simulation
of
Surface Microstructure Effects in Metal Cutting
,”
CIRP Workshop on High Performance Cutting
,
Dublin, Ireland
,
June 12–13
.
166.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
402
414
.
167.
Umbrello
,
D.
,
Jayal
,
A. D.
,
Caruso
,
S.
,
Dillon
,
O. W.
, Jr.
, and
Jawahir
,
I. S.
,
2010
, “
Modeling of White and Dark Layers Formation in Hard Machining of AISI 52100 Bearing Steel
,”
Mach. Sci. Technol.
,
14
(
1
), pp.
128
147
.
168.
Rotella
,
G.
,
Dillon
,
O. W.
, Jr.
,
Umbrello
,
D.
,
Settineri
,
L.
, and
Jawahir
,
I. S.
,
2013
, “
Finite Element Modeling of Microstructural Changes in Turning of AA7075-T651 Alloy
,”
J. Manuf. Process.
,
15
(
1
), pp.
87
95
.
169.
Ding
,
H.
, and
Shin
,
Y. C.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.
170.
Pu
,
Z.
,
Umbrello
,
D.
,
Dillon
,
O. W.
,
Lu
,
T.
,
Puleo
,
D.
, and
Jawahir
,
I. S.
,
2014
, “
Finite Element Modeling of Microstructural Changes in Dry and Cryogenic Machining of AZ31B Magnesium Alloy
,”
J. Manuf. Process.
,
16
(
2
), pp.
335
343
.
171.
Jafarian
,
F.
,
Imaz Ciaran
,
M.
,
Umbrello
,
D.
,
Arrazola
,
P. J.
,
Filice
,
L.
, and
Amirabadi
,
H.
,
2014
, “
Finite Element Simulation of Machining Inconel 718 Alloy Including Microstructure Changes
,”
Int. J. Mech. Sci.
,
88
, pp.
110
121
.
172.
Caruso
,
S.
,
Imbrogno
,
S.
,
Rinaldi
,
S.
, and
Umbrello
,
D.
,
2017
, “
Finite Element Modeling of Microstructural Changes in Waspaloy Dry Machining
,”
Int. J Adv. Manuf. Technol.
,
89
(
1–4
), pp.
227
240
.
173.
Melkote
,
S. N.
,
Liu
,
R.
,
Fernandez-Zelaia
,
P.
, and
Marusich
,
T.
,
2015
, “
A Physically Based Constitutive Model for Simulation of Segmented Chip Formation in Orthogonal Cutting of Commercially Pure Titanium
,”
CIRP Ann.
,
64
(
1
), pp.
65
68
.
174.
Rinaldi
,
S.
,
Umbrello
,
D.
, and
Melkote
,
S. N.
,
2021
, “
Modelling the Effects of Twinning and Dislocation Induced Strengthening in Orthogonal Micro and Macro Cutting of Commercially Pure Titanium
,”
Int. J. Mech. Sci.
,
190
, p.
106045
.
175.
Yen
,
Y. C.
,
Söhner
,
J.
,
Lilly
,
B.
, and
Altan
,
T.
,
2004
, “
Estimation of Tool Wear in Orthogonal Cutting Using the Finite Element Analysis
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
82
91
.
176.
Attanasio
,
A.
,
Ceretti
,
E.
,
Fiorentino
,
A.
,
Cappellini
,
C.
, and
Giardini
,
C.
,
2010
, “
Investigation and FEM-Based Simulation of Tool Wear in Turning Operations With Uncoated Carbide Tools
,”
Wear
,
269
(
5
), pp.
344
350
.
177.
Malakizadi
,
A.
,
Gruber
,
H.
,
Sadik
,
I.
, and
Nyborg
,
L.
,
2016
, “
An FEM-Based Approach for Tool Wear Estimation in Machining
,”
Wear
,
368–369
, pp.
10
24
.
178.
Filice
,
L.
,
Micari
,
F.
,
Settineri
,
L.
, and
Umbrello
,
D.
,
2007
, “
Wear Modeling in Mild Steel Orthogonal Cutting When Using Uncoated Carbide Tools
,”
Wear
,
262
(
5–6
), pp.
545
554
.
179.
Coelho
,
R. T.
,
Ng
,
E.-G.
, and
Elbestawi
,
M. A.
,
2007
, “
Tool Wear When Turning Hardened AISI 4340 With Coated PCBN Tools Using Finishing Cutting Conditions
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
263
272
.
180.
Binder
,
M.
,
Klocke
,
F.
, and
Doebbeler
,
B.
,
2017
, “
An Advanced Numerical Approach on Tool Wear Simulation for Tool and Process Design in Metal Cutting
,”
Simul. Model. Pract. Theory
,
70
, pp.
65
82
.
181.
Shao
,
F.
,
Liu
,
Z.
,
Wan
,
Y.
, and
Shi
,
Z.
,
2010
, “
Finite Element Simulation of Machining of Ti-6Al-4V Alloy With Thermodynamical Constitutive Equation
,”
Int. J. Adv. Manuf. Technol.
,
49
(
5–8
), pp.
431
439
.
182.
List
,
G.
,
Nouari
,
M.
,
Géhin
,
D.
,
Gomez
,
S.
,
Manaud
,
J. P.
,
Petitcorps
,
Y. L.
, and
Girot
,
F.
,
2014
, “
Wear Behaviour of Cemented Carbide Tools in Dry Machining of Aluminium Alloy
,”
Wear
,
259
(
7–12
), pp.
1177
1189
.
183.
Díaz-Álvarez
,
J.
,
Cantero
,
J. L.
,
Miguélez
,
H.
, and
Soldani
,
X.
,
2014
, “
Numerical Analysis of Thermomechanical Phenomena Influencing Tool Wear in Finishing Turning of Inconel 718
,”
Int. J. Mech. Sci.
,
82
, pp.
161
169
.
184.
Lorentzon
,
J.
, and
Järvstråt
,
N.
,
2008
, “
Modeling Tool Wear in Cemented-Carbide Machining Alloy 718
,”
Int. J. Mach. Tools Manuf.
,
48
(
10
), pp.
1072
1080
.
185.
Pramanik
,
A.
,
Zhang
,
L. C.
, and
Arsecularatne
,
J. A.
,
2007
, “
An FEM Investigation Into the Behavior of Metal Matrix Composites: Tool-Particle Interaction During Orthogonal Cutting
,”
Int. J. Mach. Tools Manuf.
,
47
(
10
), pp.
1497
1506
.
186.
Ulutan
,
D.
, and
Özel
,
T.
,
2013
, “
Determination of Tool Friction in Presence of Flank Wear and Stress Distribution Based Validation Using Finite Element Simulations in Machining of Titanium and Nickel Based Alloys
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2217
2237
.
187.
Soo
,
S. L.
,
Aspinwall
,
D. K.
, and
Dewes
,
R. C.
,
2004
, “
3D FE Modeling of the Cutting of Inconel 718
,”
J. Mater. Process. Technol.
,
150
(
1–2
), pp.
116
123
.
188.
Maurel-Pantel
,
A.
,
Fontaine
,
M.
,
Thibaud
,
S.
, and
Gelin
,
J. C.
,
2012
, “
3D FEM Simulations of Shoulder Milling Operations on a 304L Stainless Steel
,”
Simul. Model. Pract. Theory
,
22
, pp.
13
27
.
189.
Buchkremer
,
S.
,
Klocke
,
F.
, and
Lung
,
D.
,
2015
, “
Finite-Element-Analysis of the Relationship Between Chip Geometry and Stress Triaxiality Distribution in the Chip Breakage Location of Metal Cutting Operations
,”
Simul. Model. Pract. Theory
,
55
, pp.
10
26
.
190.
Oezkaya
,
E.
, and
Biermann
,
D.
, “
A New Reverse Engineering Method to Combine FEM and CFD Simulation Three-Dimensional Insight Into the Chipping Zone During the Drilling of Inconel 718 With Internal Cooling
,”
Mach. Sci. Technol.
,
22
(
6
), pp.
881
898
.
191.
Schulze
,
V.
,
Zanger
,
F.
,
Michna
,
J.
, and
Lang
,
F.
,
2013
, “
3D-FE-Modeling of the Drilling Process—Prediction of Phase Transformations at the Surface Layer
,”
Proc. CIRP
,
8
, pp.
33
38
.
192.
Cerutti
,
X.
,
Arsene
,
S.
, and
Mocellin
,
K.
,
2016
, “
Prediction of Machining Quality Due to the Initial Residual Stress Redistribution of Aerospace Structural Parts Made of Low-Density Aluminium Alloy Rolled Plates
,”
Int. J. Mater. Form.
,
9
(
5
), pp.
677
690
.
193.
Afrasiabi
,
M.
,
Meier
,
L.
,
Röthlin
,
M.
,
Klippel
,
H.
, and
Wegener
,
K.
,
2020
, “
GPU-Accelerated Meshfree Simulations for Parameter Identification of a Friction Model in Metal Machining
,”
Int. J. Mech. Sci.
,
176
, p.
105571
.
194.
Ong
,
Y. S.
,
Nair
,
P. B.
, and
Keane
,
A. J.
,
2003
, “
Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling
,”
AIAA J.
,
41
(
4
), pp.
687
696
.
195.
Wang
,
H.
,
Ye
,
F.
,
Chen
,
L.
, and
Li
,
E.
,
2017
, “
Sheet Metal Forming Optimization by Using Surrogate Modeling Techniques
,”
Chin. J. Mech. Eng.
,
30
(
1
), pp.
22
36
.
196.
Ortiz-de-Zarate
,
G.
,
Madariaga
,
A.
,
Arrazola
,
P. J.
, and
Childs
,
T. H. C.
,
2021
, “
A Novel Methodology to Characterize Tool-Chip Contact in Metal Cutting Using Partially Restricted Contact Length Tools
,”
CIRP Ann.
,
70
(
1
), pp.
61
64
.
197.
Stephenson
,
D. A.
, and
Agapiou
,
J. S.
,
2017
,
Metal Cutting Theory and Practice
, 3rd ed.,
CRC Press
,
Boca Raton, FL
, pp.
426
431
,
463
467
,
483
519
.
198.
Fischer
,
C. E.
,
2010
, “Modeling and Simulation of Machining,”
ASM Handbook
,
Vol. 22B
,
ASM, Materials Park
,
OH
, pp.
361
371
.
199.
Liu
,
W.
,
Ren
,
D.
,
Usui
,
S.
,
Wadell
,
J.
, and
Marusich
,
T. D.
,
2013
, “
A Gear Cutting Predictive Model Using the Finite Element Method
,”
Proc. CIRP
,
8
, pp.
51
56
.
200.
Ma
,
K.
,
Goetz
,
R.
, and
Srivatsa
,
S.
,
2010
,
Modeling of Residual Stress and Machining Distortion in Aerospace Components
, Vol.
22B
,
ASM Handbook
,
386
407
.
201.
Jayanti
,
S.
,
Ren
,
D.
,
Erickson
,
E.
,
Usui
,
S.
,
Marusich
,
T.
,
Marusich
,
K.
, and
Elanvogan
,
H.
,
2013
, “
Predictive Modeling for Tool Deflection and Part Distortion of Large Machined Components
,”
Proc. CIRP
,
12
, pp.
37
42
.
202.
Montgomery
,
D.
, and
Altintas
,
Y.
,
1991
, “
Mechanism of Cutting Force and Surface Generation in Dynamic Milling
,”
ASME J. Eng. Ind.
,
113
(
2
), pp.
160
168
.
203.
Stephenson
,
D. A.
, and
Bandyopadhyay
,
P.
,
1997
, “
Process Independent Force Characterization for Machining Simulation
,”
ASME J. Eng. Mater. Technol.
,
119
(
1
), pp.
86
94
.
204.
Stephenson
,
D. A.
,
2002
, “
Casting and Machining Process Analysis at GM Powertrain
,”
SAE Technical Paper, 2002-01-0622
.
205.
Ziada
,
Y.
, and
Yang
,
J.
,
2018
, “
Machining Quality Analysis of Powertrain Components Using Plane Strain Finite Element Cutting Models
,”
SAE Int. J. Mater. Manuf.
,
11
(
2
), pp.
113
122
.
You do not currently have access to this content.