Abstract

Dissimilar materials joining between AZ31 magnesium alloy and SPHC mild steel with Al–Mg powder additives were successfully produced by the friction stir welding process. Al–Mg powder additives were set in a gap between AZ31 and SPHC specimen’s butt prior to welding. The experiments were performed for different weight percentages of Al–Mg powder additives at welding speeds of 25 mm/min, 50 mm/min, and 100 mm/min with a constant tool rotational speed of 500 rpm. The effect of powder additives and welding speed on tensile strength, microhardness, characterization across welding interface, and fracture morphology was investigated. Tensile test results showed a significant enhancement of tensile strength of 150 MPa for 10% Al and Mg (balance) powder additives welded joint as compared to the tensile strength of 125 MPa obtained for the welded joint without powder additives. The loss of aluminum in the alloy is compensated by the addition of the Al–Mg powder during welding under a suitable heat input condition identified by varying welding speeds. Microstructural analysis revealed that the Al–Mg powder was well mixed and dispersed at the interface of the joint at a welding speed of 50 mm/min. The intermetallic compound detected in the welding interface contributed to the welding strength.

References

1.
Brinson
,
L. C.
, “How Much Air Pollution Comes From Cars?” https://auto.howstuffworks.com/air-pollution-from-cars.htm. Accessed June 25, 2020.
2.
John
,
V.
, “1.2 Billion Vehicles on World’s Roads Now, 2 Billion By 2035: Report.” https://www.greencarreports.com/news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report. Accessed June 20, 2020.
3.
“Petroleum Consumption/Countries of the World.” https://www.citypopulation.de/en/world/bymap/OilConsumption.html. Accessed May 30,-2020.
4.
Karakizis
,
P. N.
,
Pantelis
,
D. I.
,
Dragatogiannis
,
D. A.
,
Bougiouri
,
V. D.
, and
Charitidis
,
C. A.
,
2019
, “
Study of Friction Stir Butt Welding Between Thin Plates of AA5754 and Mild Steel for Automotive Applications
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9
), pp.
3065
3076
. 10.1007/s00170-019-03388-9
5.
Wang
,
W.
,
Deng
,
D.
,
Mao
,
Z.
,
Tong
,
Y.
, and
Ran
,
Y.
,
2017
, “
Influence of Tool Rotation Rates on Temperature Profiles and Mechanical Properties of Friction Stir Welded AZ31 Magnesium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5
), pp.
2191
2200
. 10.1007/s00170-016-8918-4
6.
Fall
,
A.
,
Jahazi
,
M.
,
Khdabandeh
,
A. R.
, and
Fesharaki
,
M. H.
,
2017
, “
Effect of Process Parameters on Microstructure and Mechanical Properties of Friction Stir-Welded Ti–6Al–4V Joints
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5
), pp.
2919
2931
. 10.1007/s00170-016-9527-y
7.
Saravanan
,
V.
,
Rajakumar
,
S.
,
Banerjee
,
N.
, and
Amuthakkannan
,
R.
,
2016
, “
Effect of Shoulder Diameter to Pin Diameter Ratio on Microstructure and Mechanical Properties of Dissimilar Friction Stir Welded AA2024-T6 and AA7075-T6 Aluminum Alloy Joints
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9
), pp.
3637
3645
. 10.1007/s00170-016-8695-0
8.
Mugada
,
K. K.
, and
Adepu
,
K.
,
2018
, “
Influence of Tool Shoulder End Features on Friction Stir Weld Characteristics of Al-Mg-Si Alloy
,”
Int. J. Adv. Manuf. Technol.
,
99
(
5
), pp.
1553
1566
. 10.1007/s00170-018-2602-9
9.
Lohwasser
,
D.
, and
Chen
,
Z.
,
2010
,
Friction Stir Welding: From Basics to Applications
,
Woodhead Publishing Limited
,
Cambridge
.
10.
Kusuda
,
Y.
,
2013
, “
Honda Develops Robotized FSW Technology to Weld Steel and Aluminum and Applied It to a Mass-Production Vehicle
,”
Ind. Rob.
,
40
(
3
), pp.
208
212
. 10.1108/01439911311309889
11.
Pourali
,
M.
,
Abdollah-zadeh
,
A.
,
Saeid
,
T.
, and
Kargar
,
F.
,
2017
, “
Influence of Welding Parameters on Intermetallic Compounds Formation in Dissimilar Steel/Aluminum Friction Stir Welds
,”
J. Alloys Compd.
,
715
, pp.
1
8
. 10.1016/j.jallcom.2017.04.272
12.
Yusof
,
F.
,
bin Muhamad
,
M. R.
,
Moshwan
,
R.
,
bin Jamaludin
,
M. F.
, and
Miyashita
,
Y.
,
2016
, “
Effect of Surface States on Joining Mechanisms and Mechanical Properties of Aluminum Alloy (A5052) and Polyethylene Terephthalate (PET) by Dissimilar Friction Spot Welding
,”
Metals
,
6
(
5
), p.
101
. 10.3390/met6050101
13.
Zhao
,
Y.
,
Lu
,
Z.
,
Yan
,
K.
, and
Huang
,
L.
,
2015
, “
Microstructural Characterizations and Mechanical Properties in Underwater Friction Stir Welding of Aluminum and Magnesium Dissimilar Alloys
,”
Mater. Des.
(1980–2015),
65
, pp.
675
681
. 10.1016/j.matdes.2014.09.046
14.
Doley
,
J. K.
, and
Kore
,
S. D.
,
2016
, “
A Study on Friction Stir Welding of Dissimilar Thin Sheets of Aluminum Alloys AA 5052–AA 6061
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
114502
. 10.1115/1.4033691
15.
Wang
,
K.
,
Upadhyay
,
P.
,
Wang
,
Y.
,
Li
,
J.
,
Sun
,
X.
, and
Roosendaal
,
T.
,
2018
, “
“Investigation of Interfacial Layer for Friction Stir Scribe Welded Aluminum to Steel Joints
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111406
. 10.1115/1.4041208
16.
Muhamad
,
M. R.
,
Jamaludin
,
M. F.
,
Yusof
,
F.
,
Mahmoodian
,
R.
,
Morisada
,
Y.
,
Suga
,
T.
, and
Fujii
,
H.
,
2020
, “
Effects of Al-Ni Powder Addition on Dissimilar Friction Stir Welding Between AA7075-T6 and 304 L
,”
Materialwissensch. Werkstofftechn.
,
51
(
9
), pp.
1274
1284
. 10.1002/mawe.201900105
17.
Boucherit
,
A.
,
Avettand-Fènoël
,
M.-N.
, and
Taillard
,
R.
,
2017
, “
Effect of a Zn Interlayer on Dissimilar FSSW of Al and Cu
,”
Mater. Des.
,
124
, pp.
87
99
. 10.1016/j.matdes.2017.03.063
18.
Kar
,
A.
,
Choudhury
,
S. K.
,
Suwas
,
S.
, and
Kailas
,
S. V.
,
2018
, “
Effect of Niobium Interlayer in Dissimilar Friction Stir Welding of Aluminum to Titanium
,”
Mater. Charact.
,
145
, pp.
402
412
. 10.1016/j.matchar.2018.09.007
19.
Mokabberi
,
S. R.
,
Movahedi
,
M.
, and
Kokabi
,
A. H.
,
2018
, “
Effect of Interlayers on Softening of Aluminum Friction Stir Welds
,”
Mater. Sci. Eng. A
,
727
, pp.
1
10
. 10.1016/j.msea.2018.04.093
20.
Buffa
,
G.
,
Campanella
,
D.
,
Forcellese
,
A.
,
Fratini
,
L.
,
Simoncini
,
M.
, and
Barcellona
,
A.
,
2019
, “
Constant Heat Input Friction Stir Welding of Variable Thickness AZ31 Sheets Through In-Process Tool Rotation Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081002
. 10.1115/1.4043838
21.
Chen
,
K.
,
Liu
,
X.
, and
Ni
,
J.
,
2018
, “
Friction Stir Resistance Spot Welding of Aluminum Alloy to Advanced High Strength Steel
,”
J. Manuf. Sci. Eng., Trans. ASME
,
140
(
11
), pp.
1
10
http://dx.doi.org/10.1115/1.4038993.
22.
von Goldbeck
,
O. K.
,
1982
,
Iron-Magnesium
,
Springer-Verlag
,
Berlin
.
23.
Mao
,
H. K.
, and
Bell
,
P. M.
,
1979
, “
Equations of State of MgO and ɛ Fe Under Static Pressure Conditions
,”
J. Geophys. Res.: Solid Earth
,
84
(
B9
), pp.
4533
4536
. 10.1029/JB084iB09p04533
24.
Wang
,
T.
,
Upadhyay
,
P.
, and
Whalen
,
S.
,
2020
, “
A Review of Technologies for Welding Magnesium Alloys to Steels
,”
Int. J. Precis. Eng. Manuf.—Green Technol.
0123456789 http://dx.doi.org/10.1007/s40684-020-00247-x.
25.
Chen
,
Y. C.
, and
Nakata
,
K.
,
2009
, “
Effect of Tool Geometry on Microstructure and Mechanical Properties of Friction Stir Lap Welded Magnesium Alloy and Steel
,”
Mater. Des.
,
30
(
9
), pp.
3913
3919
. 10.1016/j.matdes.2009.03.007
26.
Kasai
,
H.
,
Morisada
,
Y.
, and
Fujii
,
H.
,
2015
, “
Dissimilar FSW of Immiscible Materials: Steel/Magnesium
,”
Mater. Sci. Eng. A
,
624
, pp.
250
255
. 10.1016/j.msea.2014.11.060
27.
Inada
,
K.
,
Fujii
,
H.
,
Ji
,
Y. S.
,
Sun
,
Y. F.
, and
Morisada
,
Y.
,
2010
, “
Effect of Gap on FSW Joint Formation and Development of Friction Powder Processing
,”
Sci. Technol. Weld. Join.
,
15
(
2
), pp.
131
136
. 10.1179/136217109X12568132624244
28.
Sarkari Khorrami
,
M.
,
Samadi
,
S.
,
Janghorban
,
Z.
, and
Movahedi
,
M.
,
2015
, “
In-Situ Aluminum Matrix Composite Produced by Friction Stir Processing Using FE Particles
,”
Mater. Sci. Eng. A
,
641
, pp.
380
390
. 10.1016/j.msea.2015.06.071
29.
Fujii
,
H.
,
Sun
,
Y.
,
Inada
,
K.
,
Ji
,
Y.
,
Yokoyama
,
Y.
,
Kimura
,
H.
, and
Inoue
,
A.
,
2011
, “
Fabrication of Fe-Based Metallic Glass Particle Reinforced Al-Based Composite Materials by Friction Stir Processing
,”
Mater. Trans.
,
52
(
8
), pp.
1634
1640
. 10.2320/matertrans.M2011094
30.
Wang
,
T.
,
Gwalani
,
B.
,
Shukla
,
S.
,
Frank
,
M.
, and
Mishra
,
R. S.
,
2019
, “
Development of in Situ Composites via Reactive Friction Stir Processing of Ti–B4C System
,”
Compos. Part B: Eng.
,
172
, pp.
54
60
http://dx.doi.org/10.1016/j.compositesb.2019.05.067.
31.
Karthik
,
G. M.
,
Ram
,
G. D. J.
, and
Kottada
,
R. S.
,
2017
, “
Friction Stir Selective Alloying
,”
Mater. Sci. Eng. A
,
684
, pp.
186
190
. 10.1016/j.msea.2016.12.064
32.
Agrawal
,
P.
,
Shukla
,
S.
,
Gupta
,
S.
,
Agrawal
,
P.
, and
Mishra
,
R. S.
,
2020
, “
Friction Stir Gradient Alloying: A High-Throughput Method to Explore the Influence of V in Enabling HCP to BCC Transformation in a γ-FCC Dominated High Entropy Alloy
,”
Appl. Mater. Today
,
21
, p.
100853
. 10.1016/j.apmt.2020.100853
33.
Shukla
,
S.
,
Wang
,
T.
,
Frank
,
M.
,
Agrawal
,
P.
,
Sinha
,
S.
,
Mirshams
,
R. A.
, and
Mishra
,
R. S.
,
2020
, “
Friction Stir Gradient Alloying: A Novel Solid-State High Throughput Screening Technique for High Entropy Alloys
,”
Mater. Today Commun.
,
23
, p.
100869
. 10.1016/j.mtcomm.2019.100869
34.
Yi
,
D.
,
Onuma
,
T.
,
Mironov
,
S.
,
Sato
,
Y. S.
, and
Kokawa
,
H.
,
2016
, “
Evaluation of Heat Input During Friction Stir Welding of Aluminium Alloys
,”
Sci. Technol. Weld. Join.
,
22
(
1
), pp.
41
46
. 10.1080/13621718.2016.1183079
35.
Wang
,
T.
,
Ramírez-Tamayo
,
D.
,
Jiang
,
X.
,
Kitsopoulos
,
P.
,
Kuang
,
W.
,
Gupta
,
V.
,
Barker
,
E.
, and
Upadhyay
,
P.
,
2020
, “
Effect of Interfacial Characteristics on Magnesium to Steel Joint Obtained Using FAST
,”
Mater. Des.
,
192
, p.
108697
. 10.1016/j.matdes.2020.108697
36.
Dorbane
,
A.
,
Mansoor
,
B.
,
Ayoub
,
G.
,
Shunmugasamy
,
V. C.
, and
Imad
,
A.
,
2016
, “
Mechanical, Microstructural and Fracture Properties of Dissimilar Welds Produced by Friction Stir Welding of AZ31B and Al6061
,”
Mater. Sci. Eng. A
,
651
, pp.
720
733
. 10.1016/j.msea.2015.11.019
37.
Jiang
,
W. H.
, and
Kovacevic
,
R.
,
2004
, “
Feasibility Study of Friction Stir Welding of 6061-T6 Aluminium Alloy with AISI 1018 Steel
,”
Proc. Inst. Mech. Eng. B
,
218
(
10
), pp.
1323
1331
. 10.1243/0954405042323612
38.
Wang
,
T.
,
Shukla
,
S.
,
Gwalani
,
B.
,
Komarasamy
,
M.
,
Reza-Nieto
,
L.
, and
Mishra
,
R. S.
,
2019
, “
Effect of Reactive Alloy Elements on Friction Stir Welded Butt Joints of Metallurgically Immiscible Magnesium Alloys and Steel
,”
J. Manuf. Process.
,
39
, pp.
138
145
. 10.1016/j.jmapro.2019.02.009
39.
Abd Elnabi
,
M. M.
,
Osman
,
T. A.
,
El Mokadem
,
A.
, and
Elshalakany
,
A. B.
,
2020
, “
Evaluation of the Formation of Intermetallic Compounds at the Intermixing Lines and in the Nugget of Dissimilar Steel/Aluminum Friction Stir Welds
,”
J. Mater. Res. Technol.
,
9
(
5
), pp.
10209
10222
. 10.1016/j.jmrt.2020.07.027
40.
Sun
,
Y. F.
,
Fujii
,
H.
,
Takaki
,
N.
, and
Okitsu
,
Y.
,
2013
, “
Microstructure and Mechanical Properties of Dissimilar Al Alloy/Steel Joints Prepared by a Flat Spot Friction Stir Welding Technique
,”
Mater. Des.
,
47
, pp.
350
357
. 10.1016/j.matdes.2012.12.007
41.
Lim
,
S.
,
Kim
,
S.
,
Lee
,
C.-G.
,
Yim
,
C. D.
, and
Kim
,
S. J.
,
2005
, “
Communications: Tensile Behavior of Friction-Stir-Welded AZ31-H24 Mg Alloy
,”
Metall. Mater. Trans. A
,
36
(
6
), pp.
1609
1612
. 10.1007/s11661-005-0252-7
42.
Afrin
,
N.
,
Chen
,
D. L.
,
Cao
,
X.
, and
Jahazi
,
M.
,
2008
, “
Microstructure and Tensile Properties of Friction Stir Welded AZ31B Magnesium Alloy
,”
Mater. Sci. Eng. A
,
472
(
1
), pp.
179
186
. 10.1016/j.msea.2007.03.018
43.
Liu
,
L.
, and
Qi
,
X.
,
2010
, “
Strengthening Effect of Nickel and Copper Interlayers on Hybrid Laser-TIG Welded Joints Between Magnesium Alloy and Mild Steel
,”
Mater. Des.
,
31
(
8
), pp.
3960
3963
. 10.1016/j.matdes.2010.03.039
44.
Song
,
G.
,
An
,
G.
, and
Liu
,
L.
,
2012
, “
Effect of Gradient Thermal Distribution on Butt Joining of Magnesium Alloy to Steel with Cu–Zn Alloy Interlayer by Hybrid Laser–Tungsten Inert Gas Welding
,”
Mater. Des.
,
35
, pp.
323
329
. 10.1016/j.matdes.2011.09.006
45.
Liu
,
L.
,
Zou
,
G.
,
Mori
,
H.
,
Esmaeili
,
S.
, and
Zhou
,
Y. N.
,
2016
, “
Nanostructure of Immiscible Mg–Fe Dissimilar Weld Without Interfacial Intermetallic Transition Layer
,”
Mater. Des.
,
92
, pp.
445
449
. 10.1016/j.matdes.2015.12.072
You do not currently have access to this content.