Abstract

During high-speed machining (HSM), the microstructure of materials evolves with significant plastic deformation process under high strain rate and high temperature, which affects chip formation and material fracture mechanisms, as well as surface integrity. The development of models and simulation methods for grain refinement in machining process is of great importance. There are few models which are developed to predict the evolution of the grain refinement of HSM in mesoscale with sufficient accuracy. In this work, a cellular automata (CA) method with discontinuous (dDRX) and continuous (cDRX) dynamic recrystallization (DRX) mechanisms is applied to simulate the grain refinement and to predict the microstructure morphology during machining oxygen-free high-conductivity (OFHC) copper. The process of grain evolution is simulated with the initial conditions of strain, strain rate, and temperature obtained by finite element (FE) simulation. The evolution of dislocation density, grain deformation, grain refinement, and growth are also simulated. Moreover, cutting tests under high cutting speeds (from 750 m/min to 3000 m/min) are carried out and the microstructure of chips is observed by electron backscatter diffraction (EBSD). The results show a grain refinement during HSM, which could be due to the occurrence of dDRX and cDRX. High temperature will promote grain recovery and growth, while high strain rate will significantly cause a high density of dislocations and grain refinement. Therefore, HSM contributes to the fine equiaxed grain structure in deformed chips and the grain morphology after HSM can be simulated successfully by the CA model developed in this work.

References

1.
Rahman
,
M.
,
Wang
,
Z. G.
, and
Wong
,
Y. S.
,
2006
, “
A Review on High-Speed Machining of Titanium Alloys
,”
JSME Int. J., Ser. C Mech. Syst. Mach. Elem. Manuf.
,
49
(
1
), pp.
11
20
. 10.1299/jsmec.49.11
2.
Dudzinski
,
D.
,
Devillez
,
A.
,
Moufki
,
A.
,
Larrouquère
,
D.
,
Zerrouki
,
V.
, and
Vigneau
,
J.
,
2004
, “
A Review of Developments Towards Dry and High Speed Machining of Inconel 718 Alloy
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
439
456
. 10.1016/S0890-6955(03)00159-7
3.
Outeiro
,
J. C.
,
Campocasso
,
S.
,
Denguir
,
L. A.
,
Fromentin
,
G.
,
Vignal
,
V.
, and
Poulachon
,
G.
,
2015
, “
Experimental and Numerical Assessment of Subsurface Plastic Deformation Induced by OFHC Copper Machining
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
53
56
. 10.1016/j.cirp.2015.04.080
4.
Courbon
,
C.
,
Mabrouki
,
T.
,
Rech
,
J.
,
Mazuyer
,
D.
,
Perrard
,
F.
, and
D’Eramo
,
E.
,
2014
, “
Further Insight Into the Chip Formation of Ferritic-Pearlitic Steels: Microstructural Evolutions and Associated Thermo-Mechanical Loadings
,”
Int. J. Mach. Tools Manuf.
,
77
(
1
), pp.
34
46
. 10.1016/j.ijmachtools.2013.10.010
5.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I. S.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann. Manuf. Technol.
,
62
(
2
), pp.
695
718
. 10.1016/j.cirp.2013.05.006
6.
M’Saoubi
,
R.
,
Outeiro
,
J. C.
,
Chandrasekaran
,
H.
,
Dillon
,
O. W.
, and
Jawahir
,
I. S.
,
2008
, “
A Review of Surface Integrity in Machining and Its Impact on Functional Performance and Life of Machined Products
,”
Int. J. Sustain. Manuf.
,
1
(
1–2
), pp.
203
236
. 10.1504/ijsm.2008.019234
7.
Pu
,
Z.
,
Song
,
G. L.
,
Yang
,
S.
,
Outeiro
,
J. C.
,
Dillon
,
O. W.
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2012
, “
Grain Refined and Basal Textured Surface Produced by Burnishing for Improved Corrosion Performance of AZ31B Mg Alloy
,”
Corros. Sci.
,
57
, pp.
192
201
. 10.1016/j.corsci.2011.12.018
8.
Arisoy
,
Y. M.
, and
Özel
,
T.
,
2015
, “
Prediction of Machining Induced Microstructure in Ti-6Al-4V Alloy Using 3-D FE-Based Simulations: Effects of Tool Micro-Geometry, Coating and Cutting Conditions
,”
J. Mater. Process. Technol.
,
220
, pp.
1
26
. 10.1016/j.jmatprotec.2014.11.002
9.
Denguir
,
L. A.
,
Outeiro
,
J. C.
,
Fromentin
,
G.
,
Vignal
,
V.
, and
Besnard
,
R.
,
2017
, “
A Physical-Based Constitutive Model for Surface Integrity Prediction in Machining of OFHC Copper
,”
J. Mater. Process. Technol.
,
248
(
May
), pp.
143
160
. 10.1016/j.jmatprotec.2017.05.009
10.
Melkote
,
S. N.
,
Liu
,
R.
,
Fernandez-Zelaia
,
P.
, and
Marusich
,
T.
,
2015
, “
A Physically Based Constitutive Model for Simulation of Segmented Chip Formation in Orthogonal Cutting of Commercially Pure Titanium
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
65
68
. 10.1016/j.cirp.2015.04.060
11.
M’Saoubi
,
R.
, and
Ryde
,
L.
,
2005
, “
Application of the EBSD Technique for the Characterisation of Deformation Zones in Metal Cutting
,”
Mater. Sci. Eng. A
,
405
(
1–2
), pp.
339
349
. 10.1016/j.msea.2005.06.002
12.
Shekhar
,
S.
,
Cai
,
J.
,
Wang
,
J.
, and
Shankar
,
M. R.
,
2009
, “
Multimodal Ultrafine Grain Size Distributions From Severe Plastic Deformation at High Strain Rates
,”
Mater. Sci. Eng. A
,
527
(
1–2
), pp.
187
191
. 10.1016/j.msea.2009.07.058
13.
Huang
,
Y.
, and
Morehead
,
M.
,
2011
, “
Study of Machining-Induced Microstructure Variations of Nanostructured/Ultrafine-Grained Copper Using XRD
,”
ASME J. Eng. Mater. Technol.
,
133
(
2
), p.
021007
. 10.1115/1.4003105
14.
Rancic
,
M.
,
Colin
,
C.
,
Sennour
,
M.
,
Costes
,
J. P.
, and
Poulachon
,
G.
,
2017
, “
Microstructural Investigations of the White and Deformed Layers Close to the Turned Surface of Ti-6Al-4V
,”
Metall. Mater. Trans. A: Phys. Metall. Mater. Sci.
,
48
(
1
), pp.
389
402
. 10.1007/s11661-016-3844-5
15.
Xu
,
X.
,
Zhang
,
J.
,
Liu
,
H.
,
He
,
Y.
, and
Zhao
,
W.
,
2019
, “
Grain Refinement Mechanism Under High Strain-Rate Deformation in Machined Surface During High Speed Machining Ti6Al4V
,”
Mater. Sci. Eng. A
,
752
, pp.
167
179
. 10.1016/j.msea.2019.03.011
16.
Nie
,
G.-C.
,
Zhang
,
K.
,
Outeiro
,
J.
,
Caruso
,
S.
,
Umbrello
,
D.
,
Ding
,
H.
, and
Zhang
,
X.-M.
,
2020
, “
Plastic Strain Threshold Determination for White Layer Formation in Hard Turning of AISI 52100 Steel Using Micro-Grid Technique and Finite Element Simulations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
034501
. 10.1115/1.4045798
17.
Wang
,
Q.
, and
Liu
,
Z.
,
2018
, “
Microhardness Prediction Based on a Microstructure-Sensitive Flow Stress Model During High Speed Machining Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091003
. 10.1115/1.4039889
18.
Courbon
,
C.
,
Arrieta
,
I. M.
,
Cabanettes
,
F.
,
Rech
,
J.
, and
Arrazola
,
P. J.
,
2020
, “
The Contribution of Microstructure and Friction in Broaching Ferrite–Pearlite Steels
,”
CIRP Ann.
,
00
, pp.
4
7
. 10.1016/j.cirp.2020.04.023
19.
Cheng
,
J.
, and
Yao
,
Y. L.
,
2002
, “
Microstructure Integrated Modeling of Multiscan Laser Forming
,”
ASME J. Manuf. Sci. Eng
,
124
(
2
), pp.
379
388
. 10.1115/1.1459088
20.
Estrin
,
Y.
, and
Kim
,
H. S.
,
2007
, “
Modelling Microstructure Evolution Toward Ultrafine Crystallinity Produced by Severe Plastic Deformation
,”
J. Mater. Sci.
,
42
(
5
), pp.
1512
1516
. 10.1007/s10853-006-1282-2
21.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting
,”
Comput. Mater. Sci.
,
50
(
10
), pp.
3016
3025
. 10.1016/j.commatsci.2011.05.020
22.
Ding
,
H.
, and
Shin
,
Y. C.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), pp.
1
11
. 10.1115/msec2011-50220
23.
Tabei
,
A.
,
Shih
,
D. S.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2016
, “
Dynamic Recrystallization of Al Alloy 7075 in Turning
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071010
. 10.1115/1.4032807
24.
Behnagh
,
R. A.
,
Shen
,
N.
,
Ansari
,
M. A.
,
Narvan
,
M.
,
Kazem
,
M.
,
Givi
,
B.
, and
Ding
,
H.
,
2016
, “
Experimental Analysis and Microstructure Modeling of Friction Stir Extrusion of Magnesium Chips
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041008
. 10.1115/1.4031281
25.
Pan
,
Z.
,
Liang
,
S. Y.
,
Garmestani
,
H.
, and
Shih
,
D. S.
,
2016
, “
Prediction of Machining-Induced Phase Transformation and Grain Growth of Ti-6Al-4 V Alloy
,”
Int. J. Adv. Manuf. Technol.
,
87
(
1–4
), pp.
859
866
. 10.1007/s00170-016-8497-4
26.
Wang
,
Q.
,
Liu
,
Z.
,
Wang
,
B.
,
Song
,
Q.
, and
Wan
,
Y.
,
2016
, “
Evolutions of Grain Size and Micro-Hardness During Chip Formation and Machined Surface Generation for Ti-6Al-4V in High-Speed Machining
,”
Int. J. Adv. Manuf. Technol.
,
82
(
9–12
), pp.
1725
1736
. 10.1007/s00170-015-7508-1
27.
Imbrogno
,
S.
,
Rinaldi
,
S.
,
Umbrello
,
D.
,
Filice
,
L.
,
Franchi
,
R.
, and
Del Prete
,
A.
,
2018
, “
A Physically Based Constitutive Model for Predicting the Surface Integrity in Machining of Waspaloy
,”
Mater. Des.
,
152
, pp.
140
155
. 10.1016/j.matdes.2018.04.069
28.
Goetz
,
R. L.
, and
Seetharaman
,
V.
,
1998
, “
Modeling Dynamic Recrystallization Using Cellular Automata
,”
Scr. Mater.
,
38
(
3
), pp.
405
413
. 10.1016/S1359-6462(97)00500-9
29.
Ding
,
R.
, and
Guo
,
Z. X.
,
2001
, “
Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization
,”
Acta Mater.
,
49
(
16
), pp.
3163
3175
. 10.1016/S1359-6454(01)00233-6
30.
Wang
,
L.
,
Fang
,
G.
, and
Qian
,
L.
,
2018
, “
Modeling of Dynamic Recrystallization of Magnesium Alloy Using Cellular Automata Considering Initial Topology of Grains
,”
Mater. Sci. Eng. A
,
711
, pp.
268
283
. 10.1016/j.msea.2017.11.024
31.
Li
,
X.
,
Li
,
X.
,
Zhou
,
H.
,
Zhou
,
X.
,
Li
,
F.
, and
Liu
,
Q.
,
2017
, “
Simulation of Dynamic Recrystallization in AZ80 Magnesium Alloy Using Cellular Automaton
,”
Comput. Mater. Sci.
,
140
, pp.
95
104
. 10.1016/j.commatsci.2017.08.039
32.
Hallberg
,
H.
,
Wallin
,
M.
, and
Ristinmaa
,
M.
,
2010
, “
Simulation of Discontinuous Dynamic Recrystallization in Pure Cu Using a Probabilistic Cellular Automaton
,”
Comput. Mater. Sci.
,
49
(
1
), pp.
25
34
. 10.1016/j.commatsci.2010.04.012
33.
Huang
,
K.
, and
Logé
,
R. E.
,
2016
, “
A Review of Dynamic Recrystallization Phenomena in Metallic Materials
,”
Mater. Des.
,
111
, pp.
548
574
. 10.1016/j.matdes.2016.09.012
34.
Meyers
,
M. A.
,
Xu
,
Y. B.
,
Xue
,
Q.
,
Pérez-Prado
,
M. T.
, and
McNelley
,
T. R.
,
2003
, “
Microstructural Evolution in Adiabatic Shear Localization in Stainless Steel
,”
Acta Mater.
,
51
(
5
), pp.
1307
1325
. 10.1016/S1359-6454(02)00526-8
35.
Liu
,
H.
,
Zhang
,
J.
,
Xu
,
X.
,
Jiang
,
Y.
,
He
,
Y.
, and
Zhao
,
W.
,
2017
, “
Effect of Microstructure Evolution on Chip Formation and Fracture During High-Speed Cutting of Single Phase Metals
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
823
833
. 10.1007/s00170-016-9823-6
36.
Buda
,
J.
,
1972
, “
New Methods in the Study of Plastic Deformation in the Cutting Zone
,”
Ann. CIRP
,
21
(
1
), pp.
17
18
.
37.
Holmquist
,
T. J.
, and
Johnson
,
G. R.
,
2011
, “
A Computational Constitutive Model for Glass Subjected to Large Strains, High Strain Rates and High Pressures
,”
ASME J. Appl. Mech.
,
78
(
5
), pp.
541
547
. 10.1115/1.4004326
38.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
. 10.1016/0013-7944(85)90052-9
39.
Mabrouki
,
T.
,
Girardin
,
F.
,
Asad
,
M.
, and
Rigal
,
J.
,
2008
, “
Numerical and Experimental Study of Dry Cutting for an Aeronautic Aluminium Alloy (A2024-T351)
,”
Int. J. Mach. Tools Manuf.
,
48
(
11
), pp.
1187
1197
. 10.1016/j.ijmachtools.2008.03.013
40.
Zorev
,
N. N.
,
1963
, “
Interrelationship Between Shear Processes Occurring Along Tool Face and on Shear Plane in Metal Cutting
,”
Proc. Int. Res. Prod. Eng. Conf.
,
49
, pp.
143
152
.
41.
Astakhov
,
V. P.
, and
Shvets
,
S.
,
2004
, “
The Assessment of Plastic Deformation in Metal Cutting
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
193
202
. 10.1016/j.jmatprotec.2003.10.015
42.
Samanta
,
A.
,
Shen
,
N.
,
Ji
,
H.
,
Wang
,
W.
,
Li
,
J.
, and
Ding
,
H.
,
2018
, “
Cellular Automaton Simulation of Microstructure Evolution for Friction Stir Blind Riveting
,”
ASME J. Manuf. Sci. Eng. Trans. ASME
,
140
(
3
), pp.
1
10
. 10.1115/1.4038576
43.
Cram
,
D. G.
,
Zurob
,
H. S.
,
Brechet
,
Y. J. M.
, and
Hutchinson
,
C. R.
,
2009
, “
Modelling Discontinuous Dynamic Recrystallization Using a Physically Based Model for Nucleation
,”
Acta Mater.
,
57
(
17
), pp.
5218
5228
. 10.1016/j.actamat.2009.07.024
44.
Mishra
,
A.
,
Kad
,
B. K.
,
Gregori
,
F.
, and
Meyers
,
M. A.
,
2007
, “
Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis
,”
Acta Mater.
,
55
(
1
), pp.
13
28
. 10.1016/j.actamat.2006.07.008
45.
Hordon
,
M. J.
,
1962
, “
Dislocation Density and Flow Stress of Copper
,”
Acta Metall.
,
10
(
11
), pp.
999
1005
. 10.1016/0001-6160(62)90068-8
46.
Meyers
,
M. A.
,
Nesterenko
,
V. F.
,
LaSalvia
,
J. C.
, and
Xue
,
Q.
,
2001
, “
Shear Localization in Dynamic Deformation of Materials: Microstructural Evolution and Self-Organization
,”
Mater. Sci. Eng. A
,
317
(
1–2
), pp.
204
225
. 10.1016/S0921-5093(01)01160-1
47.
Mecking
,
H.
, and
Kocks
,
U. F.
,
1981
, “
Kinetics of Flow and Strain-Hardening
,”
Acta Metall.
,
29
(
11
), pp.
1865
1875
. 10.1016/0001-6160(81)90112-7
48.
Won Lee
,
H.
, and
Im
,
Y.-K.
,
2010
, “
Numerical Modeling of Dynamic Recrystallization During Nonisothermal Hot Compression by Cellular Automata and Finite Element Analysis
,”
Int. J. Mech. Sci.
,
52
(
10
), pp.
1277
1289
. 10.1016/j.ijmecsci.2010.06.003
49.
Roberts
,
W.
, and
Ahlblom
,
B.
,
1978
, “
A Nucleation Criterion for Dynamic Recrystallization During Hot Working
,”
Acta Metall.
,
26
(
5
), pp.
801
813
. 10.1016/0001-6160(78)90030-5
50.
Kugler
,
G.
, and
Turk
,
R.
,
2004
, “
Modeling the Dynamic Recrystallization Under Multi-Stage hot Deformation
,”
Acta Mater.
,
52
(
15
), pp.
4659
4668
. 10.1016/j.actamat.2004.06.022
51.
Stüwe
,
H. P.
, and
Ortner
,
B. B.
,
1974
, “
Recrystallization in Hot Working and Creep
,”
Met. Sci.
,
8
(
1
), pp.
161
167
. 10.1179/msc.1974.8.1.161
52.
Qian
,
M.
, and
Guo
,
Z. X.
,
2004
, “
Cellular Automata Simulation of Microstructural Evolution During Dynamic Recrystallization of an HY-100 Steel
,”
Mater. Sci. Eng. A
,
365
(
1–2
), pp.
180
185
. 10.1016/j.msea.2003.09.025
53.
Estrin
,
Y.
, and
Vinogradov
,
A.
,
2013
, “
Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science
,”
Acta Mater.
,
61
(
3
), pp.
782
817
. 10.1016/j.actamat.2012.10.038
54.
Holt
,
D. L.
,
1970
, “
Dislocation Cell Formation in Metals
,”
J. Appl. Phys.
,
41
(
8
), pp.
3197
3201
. 10.1063/1.1659399
55.
Chen
,
F.
,
Qi
,
K.
,
Cui
,
Z.
, and
Lai
,
X.
,
2014
, “
Modeling the Dynamic Recrystallization in Austenitic Stainless Steel Using Cellular Automaton Method
,”
Comput. Mater. Sci.
,
83
, pp.
331
340
. 10.1016/j.commatsci.2013.11.029
56.
Hall
,
E. O.
,
1951
, “
The Deformation and Ageing of Mild Steel: II Characteristics of the Lüders Deformation
,”
Proc. Phys. Soc. Sect. B
,
64
(
9
), pp.
742
747
. 10.1088/0370-1301/64/9/302
57.
Petch
,
N. J.
,
1953
, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst.
,
174
(
1
), pp.
25
28
.
58.
Raabe
,
D.
,
1998
,
Computational Material Science: The Simulation of Materials, Microstructures and Properties
,
Wiley-VCH
,
Weinheim
.
59.
He
,
Y.
,
Ding
,
H.
,
Liu
,
L.
, and
Shin
,
K.
,
2006
, “
Computer Simulation of 2D Grain Growth Using a Cellular Automata Model Based on the Lowest Energy Principle
,”
Mater. Sci. Eng. A
,
429
(
1–2
), pp.
236
246
. 10.1016/j.msea.2006.05.070
60.
Belyakov
,
A.
,
Sakai
,
T.
,
Miura
,
H.
, and
Tsuzaki
,
K.
,
2001
, “
Grain Refinement in Copper Under Large Strain Deformation
,”
Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop.
,
81
(
11
), pp.
2629
2643
. 10.1080/01418610108216659
You do not currently have access to this content.