A widespread use of lasers in additive manufacturing is to induce a given temperature and a phase transformation in materials deposited onto a substrate. For a laser to induce a phase transformation in the material, the power intensity must be sufficiently high to induce melting and, in all cases, stay below a vaporization or burn-off temperature of the target material. Oftentimes, there is variability in the laser input to the target zone. For a process designer, a central question is to determine the uncertainty of the resulting target state, i.e., temperature and state (solid or melted), due to uncertainty in the energy (laser) input. This motivates the present work, which integrates relatively fundamental heat transfer models that describe the thermal effects due to (a) laser irradiation, (b) heat conduction into the surface of deposition, (c) infrared radiation outwards into the surroundings, (d) convection due to an exhaust apparatus to control the cooling of the system, and (e) phase transformations, for a dry Nylon 6 powder as a sample material. One key advantage of this framework is that it is amenable to a sensitivity and uncertainty analysis with respect to any of its parameter inputs. Accordingly, uncertainty quantification studies are also undertaken to ascertain the relationship between variation in laser input to variation in the processed material state. Examples will be presented to illustrate the thermal behavior of the numerical model. Due to its simplicity, this framework is designed to be computationally implemented in a straightforward fashion. The model allows for rapid computation and sensitivity analyses, which are provided as numerical examples. Extensions are also given to include mass transport (losses) due to ablation of the target material.

References

1.
Householder
,
R.
,
1979
, “
Molding Process
,” U.S. Patent No. 4,247,508.
2.
Deckard
,
C.
,
1986
, “
Method and Apparatus for Producing Parts by Selective Sintering
,” U.S. Patent No. 4,863,538.
3.
Smith
,
J.
,
Xiong
,
W.
,
Yan
,
W.
,
Lin
,
S.
,
Cheng
,
P.
,
Kafka
,
O. L.
,
Wagner
,
G. J.
,
Cao
,
J.
, and
Liu
,
W. K.
,
2016
, “
Linking Process, Structure, Property, and Performance for Metal-Based Additive Manufacturing: Computational Approaches With Experimental Support
,”
Comput. Mech.
,
57
(
4
), pp.
583
610
.
4.
Voisin
,
T.
,
Calta
,
N. P.
,
Khairallah
,
S. A.
,
Forien
,
J. B.
,
Balogh
,
L.
,
Cunningham
,
R. W.
,
Rollett
,
A. D.
, and
Wang
,
Y. M.
,
2018
, “
Defects-Dictated Tensile Properties of Selective Laser Melted Ti-6al-4v
,”
Mater. Des.
,
158
(
1
), pp.
113
126
.
5.
Wang
,
Z.
,
Yan
,
W.
,
Liu
,
W. K.
, and
Liu
,
M.
,
2019
, “
Powder-Scale Multiphysics Modeling of Multi-Layer Multi-Track Selective Laser Melting With Sharp Interface Capturing Method
,”
Comput. Mech.
,
63
(
4
), pp.
649
661
.
6.
Zohdi
,
T. I.
,
2014
, “
Additive Particle Deposition and Selective Laser Processing-A Computational Manufacturing Framework
,”
Comput. Mech.
,
54
(
1
), pp.
171
191
.
7.
Zohdi
,
T. I.
,
2015
, “
Modeling and Simulation of Cooling-Induced Residual Stresses in Heated Particulate Mixture Depositions
,”
Comput. Mech.
,
56
(
4
), pp.
613
630
.
8.
Kruth
,
J.
,
Levy
,
G.
,
Schindel
,
R.
,
Craeghs
,
T.
, and
Yasa
,
E.
,
2008
, “
Consolidation of Polymer Powders by Selective Laser Sintering
,”
International Conference on Polymers and Moulds Innovations
,
Ghent, Belgium
,
September
.
9.
Bertrand
,
P.
,
Bayle
,
F.
,
Combe
,
C.
,
Goeuriot
,
P.
, and
Smurov
,
I.
,
2007
, “
Ceramic Components Manufacturing by Selective Laser Sintering
,”
Appl. Surf. Sci.
,
254
(
4
), pp.
989
992
.
10.
Kinstlinger
,
I. S.
,
Bastian
,
A.
,
Paulsen
,
S. J.
,
Hwang
,
D. H.
,
Ta
,
A. H.
,
Yalacki
,
D. R.
,
Schmidt
,
T.
, and
Miller
,
J. S.
,
2016
, “
Open-Source Selective Laser Sintering (opensls) of Nylon and Biocompatible Polycaprolactone
,”
PLoS One
,
11
(
2
), pp.
1
25
.
11.
Oñate
,
E.
,
Idelsohn
,
S. R.
,
Celigueta
,
M. A.
, and
Rossi
,
R.
,
2008
, “
Advances in the Particle Finite Element Method for the Analysis of Fluid Multibody Interaction and Bed Erosion in Free Surface Flows
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
19–20
), pp.
1777
1800
.
12.
Oñate
,
E.
,
Celigueta
,
M. A.
,
Idelsohn
,
S. R.
,
Salazar
,
F.
, and
Suárez
,
B.
,
2011
, “
Possibilities of the Particle Finite Element Method for Fluid-Soil-Structure Interaction Problems
,”
Comput. Mech.
,
48
(
3
), pp.
307
318
.
13.
Oñate
,
E.
,
Celigueta
,
M. A.
,
Latorre
,
S.
,
Casas
,
G.
,
Rossi
,
R.
, and
Rojek
,
J.
,
2011
, “
Lagrangian Analysis of Multiscale Particulate Flows With the Particle Finite Element Method
,”
Comput. Part. Mech.
,
1
(
1
), pp.
85
102
.
14.
Carbonell
,
J. M.
,
Oñate
,
E.
, and
Suárez
,
B.
,
2010
, “
Modeling of Ground Excavation With the Particle Finite Element Method
,”
J. Eng. Mech.
,
136
(
4
), pp.
455
463
.
15.
Labra
,
C.
, and
Oñate
,
E.
,
2009
, “
High-Density Sphere Packing for Discrete Element Method Simulations
,”
Commun. Numerical Methods Eng.
,
25
(
7
), pp.
837
849
.
16.
Rojek
,
J.
,
Labra
,
C.
,
Su
,
O.
, and
Oñate
,
E.
,
2012
, “
Comparative Study of Different Discrete Element Models and Evaluation of Equivalent Micromechanical Parameters
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1497
1517
.
17.
Rojek
,
J.
,
2014
, “
Discrete Element Thermomechanical Modeling of Rock Cutting With Valuation of Tool Wear
,”
Comput. Particle Mech.
,
1
(
1
), pp.
71
84
.
18.
Avci
,
B.
, and
Wriggers
,
P.
,
2012
, “
A DEM-FEM Coupling Approach for the Direct Numerical Simulation of 3D Particulate Flows
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
010901
.
19.
Leonardi
,
A.
,
Wittel
,
F. K.
,
Mendoza
,
M.
, and
Herrmann
,
H. J.
,
2014
, “
Coupled DEM-LBM Method for the Free-Surface Simulation of Heterogeneous Suspensions
,”
Comput. Particle Mech.
,
1
(
1
), pp.
3
13
.
20.
Bolintineanu
,
D. S.
,
Grest
,
G. S.
,
Lechman
,
J. B.
,
Pierce
,
F.
,
Plimpton
,
S. J.
, and
Schunk
,
P. R.
,
2014
, “
Particle Dynamics Modeling Methods for Colloid Suspensions
,”
Comput. Particle Mech.
,
1
(
3
), pp.
321
356
.
21.
Salloum
,
M.
,
Johnson
,
K. L.
,
Bishop
,
J. E.
,
Aytac
,
J. M.
,
Dagel
,
D.
, and
Waanders
,
B. G. V. B.
,
2019
, “
Adaptive Wavelet Compression of Large Additive Manufacturing Experimental and Simulation Datasets
,”
Comput. Mech.
,
63
(
3
), pp.
491
510
.
22.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumdar
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
23.
Okada
,
T.
,
Ishige
,
R.
, and
Ando
,
S.
,
2016
, “
Analysis of Thermal Radiation Properties of Polyimide and Polymeric Materials Based on ATR-IR Spectroscopy
,”
J. Photopolym. Sci. Technol.
,
29
(
2
), pp.
251
254
.
24.
Mark
,
J. E.
,
1999
,
Polymer Data Handbook
,
Oxford University Press
,
New York
.
25.
Sartori
,
E.
,
2006
, “
Convection Coefficient Equations for Forced Air Flow Over Flat Surfaces
,”
Solar Energy
,
80
(
9
), pp.
1063
1071
.
26.
Millot
,
C.
,
Fillot
,
L. A.
,
Lame
,
O.
,
Sotta
,
P.
, and
Seguela
,
R.
,
2015
, “
Assessment of Polyamide-6 Crystallinity by DSC: Temperature Dependence of the Melting Enthalpy
,”
J. Therm. Anal. Calorim.
,
122
(
1
), pp.
307
314
.
27.
Zohdi
,
T. I.
,
2006
, “
Computation of the Coupled Thermo-Optical Scattering Properties of Random Particulate Systems
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5813
5830
.
28.
Gross
,
H.
,
2005
,
Handbook of Optical Systems. Fundamental of Technical Optics
,
Wiley-VCH
,
Weinheim
.
29.
Ganeriwala
,
R.
, and
Zohdi
,
T. I.
,
2016
, “
A Coupled Discrete Element-Finite Difference Model of Selective Laser Sintering
,”
Granul. Matter
,
18
(
2
).
30.
Zohdi
,
T. I.
,
2013
, “
Rapid Simulation of Laser Processing of Discrete Particulate Materials
,”
Arch. Comput. Methods Eng.
,
20
(
4
), pp.
309
325
.
31.
Zohdi
,
T. I.
,
2018
, “
Construction of a Rapid Simulation Design Tool for Thermal Responses to Laser-Induced Feature Patterns
,”
Comput. Mech.
,
62
(
3
), pp.
393
409
.
32.
Zohdi
,
T. I.
,
2018
, “
Laser-Induced Heating of Dynamic Depositions in Additive Manufacturing
,”
Comput. Methods Appl. Mech. Eng.
,
331
(
1
), pp.
232
258
.
You do not currently have access to this content.