Abstract

The presence of various uncertainty sources in metal-based additive manufacturing (AM) process prevents producing AM products with consistently high quality. Using electron beam melting (EBM) of Ti-6Al-4V as an example, this paper presents a data-driven framework for process parameters optimization using physics-informed computer simulation models. The goal is to identify a robust manufacturing condition that allows us to constantly obtain equiaxed materials microstructures under uncertainty. To overcome the computational challenge in the robust design optimization under uncertainty, a two-level data-driven surrogate model is constructed based on the simulation data of a validated high-fidelity multiphysics AM simulation model. The robust design result, indicating a combination of low preheating temperature, low beam power, and intermediate scanning speed, was acquired enabling the repetitive production of equiaxed structure products as demonstrated by physics-based simulations. Global sensitivity analysis at the optimal design point indicates that among the studied six noise factors, specific heat capacity and grain growth activation energy have the largest impact on the microstructure variation. Through this exemplar process optimization, the current study also demonstrates the promising potential of the presented approach in facilitating other complicate AM process optimizations, such as robust designs in terms of porosity control or direct mechanical property control.

References

1.
Brandl
,
E.
,
Schoberth
,
A.
, and
Leyens
,
C.
,
2012
, “
Morphology, Microstructure, and Hardness of Titanium (Ti-6Al-4V) Blocks Deposited by Wire-Feed Additive Layer Manufacturing (ALM)
,”
Mater. Sci. Eng. A
,
532
(
Suppl. C
), pp.
295
307
.
2.
Donoghue
,
J.
,
Antonysamy
,
A.
,
Martina
,
F.
,
Colegrove
,
P.
,
Williams
,
S.
, and
Prangnell
,
P.
,
2016
, “
The Effectiveness of Combining Rolling Deformation With Wire–Arc Additive Manufacture on β-Grain Refinement and Texture Modification in Ti–6Al–4V
,”
Mater. Charact.
,
114
, pp.
103
114
.
3.
Körner
,
C.
,
2016
, “
Additive Manufacturing of Metallic Components by Selective Electron Beam Melting—A Review
,”
Int. Mater. Rev.
,
61
(
5
), pp.
361
377
.
4.
Laureijs
,
R. E.
,
Roca
,
J. B.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J. L.
, and
Fuchs
,
E. R.
,
2017
, “
Metal Additive Manufacturing: Cost Competitive Beyond Low Volumes
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081010
.
5.
Nath
,
P.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Multi-Level Uncertainty Quantification in Additive Manufacturing
,”
Solid Freeform Fabrication: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 7–9
,
Univeristy of Texas at Austin
,
Austin, TX
, pp.
7
9
.
6.
Ma
,
L.
,
Fong
,
J.
,
Lane
,
B.
,
Moylan
,
S.
,
Filliben
,
J.
,
Heckert
,
A.
, and
Levine
,
L.
,
2015
, “
Using Design of Experiments in Finite Element Modeling to Identify Critical Variables for Laser Powder Bed Fusion
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 10–12
,
Univeristy of Texas at Austin
,
Austin, TX
, pp.
219
228
.
7.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.
8.
Chan
,
S.
, and
Elsheikh
,
A. H.
,
2018
, “
A Machine Learning Approach for Efficient Uncertainty Quantification Using Multiscale Methods
,”
J. Comput. Phys.
,
354
, pp.
493
511
.
9.
Zhu
,
Y.
, and
Zabaras
,
N.
,
2018
, “
Bayesian Deep Convolutional Encoder–Decoder Networks for Surrogate Modeling and Uncertainty Quantification
,”
J. Comput. Phys.
,
366
, pp.
415
447
.
10.
Sankararaman
,
S.
,
Ling
,
Y.
, and
Mahadevan
,
S.
,
2011
, “
Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction
,”
Eng. Fract. Mech.
,
78
(
7
), pp.
1487
1504
.
11.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.
12.
Kamath
,
C.
,
2016
, “
Data Mining and Statistical Inference in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1659
1677
.
13.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114502
.
14.
Haines
,
M.
,
Plotkowski
,
A.
,
Frederick
,
C. L.
,
Schwalbach
,
E. J.
, and
Babu
,
S. S.
,
2018
, “
A Sensitivity Analysis of the Columnar-to-Equiaxed Transition for Ni-Based Superalloys in Electron Beam Additive Manufacturing
,”
Comput. Mater. Sci.
,
155
, pp.
340
349
.
15.
Moser
,
D.
,
Fish
,
S.
,
Beaman
,
J.
, and
Murthy
,
J.
,
2014
, “
Multi-Layer Computational Modeling of Selective Laser Sintering Processes
,”
ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, Canada
,
Nov. 14–20
, p.
V02AT02A008
.
16.
Tapia
,
G.
,
King
,
W.
,
Johnson
,
L.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Uncertainty Propagation Analysis of Computational Models in Laser Powder Bed Fusion Additive Manufacturing Using Polynomial Chaos Expansions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121006
.
17.
Fallah
,
V.
,
Amoorezaei
,
M.
,
Provatas
,
N.
,
Corbin
,
S. F.
, and
Khajepour
,
A.
,
2012
, “
Phase-Field Simulation of Solidification Morphology in Laser Powder Deposition of Ti–Nb Alloys
,”
Acta Mater.
,
60
(
4
), pp.
1633
1646
.
18.
Sahoo
,
S.
, and
Chou
,
K.
,
2016
, “
Phase-Field Simulation of Microstructure Evolution of Ti–6Al–4V in Electron Beam Additive Manufacturing Process
,”
Addit. Manuf.
,
9
, pp.
14
24
.
19.
Acharya
,
R.
,
Sharon
,
J. A.
, and
Staroselsky
,
A.
,
2017
, “
Prediction of Microstructure in Laser Powder Bed Fusion Process
,”
Acta Mater.
,
124
, pp.
360
371
.
20.
Raghavan
,
N.
,
Dehoff
,
R.
,
Pannala
,
S.
,
Simunovic
,
S.
,
Kirka
,
M.
,
Turner
,
J.
,
Carlson
,
N.
, and
Babu
,
S. S.
,
2016
, “
Numerical Modeling of Heat-Transfer and the Influence of Process Parameters on Tailoring the Grain Morphology of IN718 in Electron Beam Additive Manufacturing
,”
Acta Mater.
,
112
, pp.
303
314
.
21.
Gäumann
,
M.
,
Bezencon
,
C.
,
Canalis
,
P.
, and
Kurz
,
W.
,
2001
, “
Single-Crystal Laser Deposition of Superalloys: Processing–Microstructure Maps
,”
Acta Mater.
,
49
(
6
), pp.
1051
1062
.
22.
Hunt
,
J.
,
1984
, “
Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic
,”
Mater. Sci. Eng.
,
65
(
1
), pp.
75
83
.
23.
Gockel
,
J.
,
Beuth
,
J.
, and
Taminger
,
K.
,
2014
, “
Integrated Control of Solidification Microstructure and Melt Pool Dimensions in Electron Beam Wire Feed Additive Manufacturing of Ti-6Al-4V
,”
Addit. Manuf.
,
1
, pp.
119
126
.
24.
Mani
,
M.
,
Feng
,
S.
,
Lane
,
B.
,
Donmez
,
A.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
,
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder bed Fusion Processes
,
US Department of Commerce, National Institute of Standards and Technology
. NISTIR 8036.
25.
Liu
,
P.
,
Ji
,
Y.
,
Wang
,
Z.
,
Qiu
,
C.
,
Antonysamy
,
A.
,
Chen
,
L.-Q.
,
Cui
,
X.
, and
Chen
,
L.
,
2018
, “
Investigation on Evolution Mechanisms of Site-Specific Grain Structures During Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
257
, pp.
191
202
.
26.
Liu
,
P.
,
Cui
,
X.
,
Deng
,
J.
,
Li
,
S.
,
Li
,
Z.
, and
Chen
,
L.
,
2019
, “
Investigation of Thermal Responses During Metallic Additive Manufacturing Using a ‘Tri-Prism’ Finite Element Method
,”
Int. J. Therm. Sci.
,
136
, pp.
217
229
.
27.
Liu
,
P.
,
Wang
,
Z.
,
Xiao
,
Y.
,
Mark
,
H. F.
,
Cui
,
X.
, and
Chen
,
L.
,
2019
, “
Insight into the Mechanisms of Columnar to Equiaxed Grain Transition During Metallic Additive Manufacturing
,”
Addit. Manuf.
,
26
, pp.
22
29
.
28.
Donoghue
,
J.
,
Gholinia
,
A.
,
Fonseca
,
J. Q. d.
, and
Prangnell
,
P.
,
2015
, “
In-Situ High Temperature EBSD Analysis of the Effect of a Deformation Step on the Alpha to Beta Transition in Additive Manufactured Ti-6Al-4V
,”
Proceedings of the 13th World Conference on Titanium
,
San Diego, CA
,
Aug. 16–20
,
The Minerals, Metals and Materials Society
,
Warrendale, PA
, pp.
1283
1288
.
29.
Antonysamy
,
A. A.
,
Meyer
,
J.
, and
Prangnell
,
P.
,
2013
, “
Effect of Build Geometry on the β-Grain Structure and Texture in Additive Manufacture of Ti 6Al 4V by Selective Electron Beam Melting
,”
Mater. Charact.
,
84
, pp.
153
168
.
30.
Gockel
,
J.
,
Klingbeil
,
N.
, and
Bontha
,
S.
,
2016
, “
A Closed-Form Solution for the Effect of Free Edges on Melt Pool Geometry and Solidification Microstructure in Additive Manufacturing of Thin-Wall Geometries
,”
Metall. Mater. Trans. B
,
47
(
2
), pp.
1400
1408
.
31.
Kundin
,
J.
,
Mushongera
,
L.
, and
Emmerich
,
H.
,
2015
, “
Phase-Field Modeling of Microstructure Formation During Rapid Solidification in Inconel 718 Superalloy
,”
Acta Mater.
,
95
, pp.
343
356
.
32.
Li
,
J.
,
Wang
,
Q.
, and
Michaleris
,
P. P.
,
2018
, “
An Analytical Computation of Temperature Field Evolved in Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101004
.
33.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application of Metal Treatments
,”
Trans. ASME
,
68
, pp.
849
866
.
34.
Nie
,
P.
,
Ojo
,
O.
, and
Li
,
Z.
,
2014
, “
Numerical Modeling of Microstructure Evolution During Laser Additive Manufacturing of a Nickel-Based Superalloy
,”
Acta Mater.
,
77
, pp.
85
95
.
35.
Cheng
,
B.
,
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061018
.
36.
Wei
,
L. C.
,
Ehrlich
,
L. E.
,
Powell-Palm
,
M. J.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Malen
,
J. A.
,
2018
, “
Thermal Conductivity of Metal Powders for Powder Bed Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
201
208
.
37.
Cheng
,
B.
,
Lane
,
B.
,
Whiting
,
J.
, and
Chou
,
K.
,
2018
, “
A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111008
.
38.
Ghosh
,
S.
,
Ma
,
L.
,
Ofori-Opoku
,
N.
, and
Guyer
,
J. E.
,
2017
, “
On the Primary Spacing and Microsegregation of Cellular Dendrites in Laser Deposited Ni–Nb Alloys
,”
Modell. Simul. Mater. Sci. Eng.
,
25
(
6
), p.
065002
.
39.
abaqus version 6.10
,
2010
, “
User Subroutines Reference Manual
.”
Dassault Systemes Simulia Corp.
40.
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2013
, “
Experimental Temperature Analysis of Powder-Based Electron Beam Additive Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
,
Univeristy of Texas at Austin
,
Austin, TX
, pp.
162
173
.
41.
Wang
,
X.
,
Liu
,
P.
,
Ji
,
Y.
,
Liu
,
Y.
,
Horstemeyer
,
M.
, and
Chen
,
L.
,
2019
, “
Investigation on Microsegregation of IN718 Alloy During Additive Manufacturing via Integrated Phase-Field and Finite-Element Modeling
,”
J. Mater. Eng. Perform.
,
28
(
2
), pp.
657
665
.
42.
Rai
,
A.
,
Markl
,
M.
, and
Körner
,
C.
,
2016
, “
A Coupled Cellular Automaton–Lattice Boltzmann Model for Grain Structure Simulation During Additive Manufacturing
,”
Comput. Mater. Sci.
,
124
, pp.
37
48
.
43.
Rodgers
,
T. M.
,
Madison
,
J. D.
, and
Tikare
,
V.
,
2017
, “
Simulation of Metal Additive Manufacturing Microstructures Using Kinetic Monte Carlo
,”
Comput. Mater. Sci.
,
135
, pp.
78
89
.
44.
Baykasoglu
,
C.
,
Akyildiz
,
O.
,
Candemir
,
D.
,
Yang
,
Q.
, and
To
,
A. C.
,
2018
, “
Predicting Microstructure Evolution During Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051003
.
45.
Krill
,
C. E.
III
, and
Chen
,
L.-Q.
,
2002
, “
Computer Simulation of 3-D Grain Growth Using a Phase-Field Model
,”
Acta Mater.
,
50
, pp.
3057
3073
.
46.
Lee
,
D. N.
,
Kim
,
K.-h.
,
Lee
,
Y.-g.
, and
Choi
,
C.-H.
,
1997
, “
Factors Determining Crystal Orientation of Dendritic Growth During Solidification
,”
Mater. Chem. Phys.
,
47
(
2
), pp.
154
158
.
47.
Ohno
,
M.
,
Yamaguchi
,
T.
,
Sato
,
D.
, and
Matsuura
,
K.
,
2013
, “
Existence or Nonexistence of Thermal Pinning Effect in Grain Growth Under Temperature Gradient
,”
Comput. Mater. Sci.
,
69
, pp.
7
13
.
48.
Ataibis
,
V.
, and
Taktak
,
S.
,
2015
, “
Characteristics and Growth Kinetics of Plasma Paste Borided Cp–Ti and Ti6Al4V Alloy
,”
Surf. Coat. Technol.
,
279
, pp.
65
71
.
49.
Al-Bermani
,
S.
,
Blackmore
,
M.
,
Zhang
,
W.
, and
Todd
,
I.
,
2010
, “
The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V
,”
Metall. Mater. Trans. A
,
41
(
13
), pp.
3422
3434
.
50.
Schempp
,
P.
,
Cross
,
C.
,
Pittner
,
A.
,
Oder
,
G.
,
Neumann
,
R. S.
,
Rooch
,
H.
,
Dörfel
,
I.
,
Österle
,
W.
, and
Rethmeier
,
M.
,
2014
, “
Solidification of GTA Aluminum Weld Metal: Part 1—Grain Morphology Dependent upon Alloy Composition and Grain Refiner Content
,”
Weld. J.
,
93
(
2
), pp.
53s
59s
.
51.
Schempp
,
P.
,
Cross
,
C.
,
Pittner
,
A.
, and
Rethmeier
,
M.
,
2014
, “
Solidification of GTA Aluminum Weld Metal: Part 2—Thermal Conditions and Model for Columnar-to-Equiaxed Transition
,”
Weld. J.
,
93
, pp.
69
77
.
52.
Charbon
,
C.
, and
Rappaz
,
M.
,
1993
, “
3D Probabilistic Modelling of Equiaxed Eutectic Solidification
,”
Modell. Simul. Mater. Sci. Eng.
,
1
(
4
), p.
455
.
53.
Gockel
,
J.
, and
Beuth
,
J.
,
2013
, “
Understanding Ti-6Al-4V Microstructure Control in Additive Manufacturing Via Process Maps
,”
Solid Freeform Fabrication Proceedings
,
Austin, TX
,
Aug. 12–14
,
University of Texas at Austin
,
Austin, TX
, pp.
12
14
.
54.
Kobryn
,
P. A.
, and
Semiatin
,
S.
,
2003
, “
Microstructure and Texture Evolution During Solidification Processing of Ti–6Al–4V
,”
J. Mater. Process. Technol.
,
135
(
2
), pp.
330
339
.
55.
Sahoo
,
S.
,
2014
, “
Microstructure Simulation of Ti-6Al-4V Biomaterial Produced by Electron Beam Additive Manufacturing Process
,”
Int. J. Nano Biomater.
,
5
(
4
), pp.
228
235
.
56.
Boivineau
,
M.
,
Cagran
,
C.
,
Doytier
,
D.
,
Eyraud
,
V.
,
Nadal
,
M.-H.
,
Wilthan
,
B.
, and
Pottlacher
,
G.
,
2006
, “
Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy
,”
Int. J. Thermophys.
,
27
(
2
), pp.
507
529
.
57.
Brooks
,
R. F.
,
Robinson
,
J. A.
,
Chapman
,
L. A.
, and
Richardson
,
M. J.
,
2004
, “
The Enthalpy of a Solid and Liquid Titanium-Aluminium-Vanadium Alloy
,”
High Temp.-High Press
,
35
(
2
), pp.
193
198
.
58.
Wu
,
L.
, and
Zhang
,
J.
,
2018
, “
Phase Field Simulation of Dendritic Solidification of Ti-6Al-4V During Additive Manufacturing Process
,”
JOM
,
70
(
10
), pp.
2392
2399
.
59.
Yan
,
W.
,
Smith
,
J.
,
Ge
,
W.
,
Lin
,
F.
, and
Liu
,
W. K.
,
2015
, “
Multiscale Modeling of Electron Beam and Substrate Interaction: A New Heat Source Model
,”
Comput. Mech.
,
56
(
2
), pp.
265
276
.
60.
Klassen
,
A.
,
Bauereiß
,
A.
, and
Körner
,
C.
,
2014
, “
Modelling of Electron Beam Absorption in Complex Geometries
,”
J. Phys. D: Appl. Phys.
,
47
(
6
), p.
065307
.
61.
Körner
,
C.
,
Attar
,
E.
, and
Heinl
,
P.
,
2011
, “
Mesoscopic Simulation of Selective Beam Melting Processes
,”
J. Mater. Process. Technol.
,
211
(
6
), pp.
978
987
.
62.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing
,”
Scr. Mater.
,
135
, pp.
135
140
.
63.
Xiao
,
Y.
,
Zhan
,
H.
,
Gu
,
Y.
, and
Li
,
Q.
,
2017
, “
Modeling Heat Transfer During Friction Stir Welding Using a Meshless Particle Method
,”
Int. J. Heat Mass Transf.
,
104
, pp.
288
300
.
64.
Roth
,
T. A.
, and
Suppayak
,
P.
,
1978
, “
The Surface and Grain Boundary Free Energies of Pure Titanium and the Titanium Alloy Ti-6AI-4V
,”
Mater. Sci. Eng.
,
35
(
2
), pp.
187
196
.
65.
Roth
,
T. A.
, and
Henning
,
W. D.
,
1985
, “
The Surface and Grain Boundary Free Energies and the Self-Diffusion Coefficient of 5Al-2.5Sn Titanium Alloy
,”
Mater. Sci. Eng.
,
76
, pp.
187
194
.
66.
Gil
,
F.
, and
Planell
,
J.
,
2000
, “
Behaviour of Normal Grain Growth Kinetics in Single Phase Titanium and Titanium Alloys
,”
Mater. Sci. Eng. A
,
283
(
1
), pp.
17
24
.
67.
Ding
,
R.
, and
Guo
,
Z. X.
,
2002
, “
Microstructural Modelling of Dynamic Recrystallisation Using an Extended Cellular Automaton Approach
,”
Comput. Mater. Sci.
,
23
(
1
), pp.
209
218
.
68.
Mishra
,
S.
, and
DebRoy
,
T.
,
2004
, “
Measurements and Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of Ti–6Al–4V Welds
,”
Acta Mater.
,
52
(
5
), pp.
1183
1192
.
69.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting® of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
.
70.
Martin
,
J. H.
,
Yahata
,
B. D.
,
Hundley
,
J. M.
,
Mayer
,
J. A.
,
Schaedler
,
T. A.
, and
Pollock
,
T. M.
,
2017
, “
3D Printing of High-Strength Aluminium Alloys
,”
Nature
,
549
(
7672
), pp.
365
369
.
71.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Global Sensitivity Analysis-Enhanced Surrogate (GSAS) Modeling for Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
53
(
3
), pp.
501
521
.
72.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
73.
Hu
,
Z.
,
Ao
,
D.
, and
Mahadevan
,
S.
,
2017
, “
Calibration Experimental Design Considering Field Response and Model Uncertainty
,”
Comput. Methods Appl. Mech. Eng.
,
318
, pp.
92
119
.
74.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
75.
Forrester
,
J.
,
Keane
,
A. I.
,
and Bressloff
,
A. J.
, and
W
,
N.
,
2006
, “
Design and Analysis of ‘Noisy’ Computer Experiments
,”
AIAA J.
,
44
(
10
), pp.
2331
2339
.
76.
Gong
,
X.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
Beam Speed Effects on Ti–6Al–4V Microstructures in Electron Beam Additive Manufacturing
,”
J. Mater. Res.
,
29
(
17
), pp.
1951
1959
.
77.
Narra
,
S. P.
,
Cunningham
,
R.
,
Beuth
,
J.
, and
Rollett
,
A. D.
,
2018
, “
Location Specific Solidification Microstructure Control in Electron Beam Melting of Ti-6Al-4V
,”
Addit. Manuf.
,
19
, pp.
160
166
.
78.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2018
, “
Probability Models for Data-Driven Global Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
187
, pp.
40
57
.
79.
Stanev
,
V.
,
Oses
,
C.
,
Kusne
,
A. G.
,
Rodriguez
,
E.
,
Paglione
,
J.
,
Curtarolo
,
S.
, and
Takeuchi
,
I.
,
2018
, “
Machine Learning Modeling of Superconducting Critical Temperature
,”
npj Comput. Mater.
,
4
(
1
), p.
29
.
80.
Jäger
,
M. O.
,
Morooka
,
E. V.
,
Canova
,
F. F.
,
Himanen
,
L.
, and
Foster
,
A. S.
,
2018
, “
Machine Learning Hydrogen Adsorption on Nanoclusters Through Structural Descriptors
,”
npj Comput. Mater
,
4
(
1
), p.
37
.
81.
Rovinelli
,
A.
,
Sangid
,
M. D.
,
Proudhon
,
H.
, and
Ludwig
,
W.
,
2018
, “
Using Machine Learning and a Data-Driven Approach to Identify the Small Fatigue Crack Driving Force in Polycrystalline Materials
,”
npj Comput. Mater.
,
4
(
1
), p.
35
.
82.
Ward
,
L.
,
Agrawal
,
A.
,
Choudhary
,
A.
, and
Wolverton
,
C.
,
2016
, “
A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials
,”
npj Comput. Mater.
,
2
, p.
16028
.
83.
Medasani
,
B.
,
Gamst
,
A.
,
Ding
,
H.
,
Chen
,
W.
,
Persson
,
K. A.
,
Asta
,
M.
,
Canning
,
A.
, and
Haranczyk
,
M.
,
2016
, “
Predicting Defect Behavior in B2 Intermetallics by Merging Ab Initio Modeling and Machine Learning
,”
npj Comput. Mater
,
2
(
1
), p.
1
.
84.
Zhang
,
W.
,
Mehta
,
A.
,
Desai
,
P. S.
, and
Fred Higgs
,
P. C.
, III
,
2017
, “
Machine Learning Enabled Powder Spreading Process Map For Metal Additive Manufacturing (AM)
,”
2017 Solid Freeform Fabrication Symposium Proceedings
,
Austin, TX
,
Aug. 7–9
,
Univeristy of Texas at Austin
,
Austin, TX
.
85.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3591
3603
.
86.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
87.
Dehoff
,
R.
,
Kirka
,
M.
,
Sames
,
W.
,
Bilheux
,
H.
,
Tremsin
,
A.
,
Lowe
,
L.
, and
Babu
,
S.
,
2015
, “
Site Specific Control of Crystallographic Grain Orientation Through Electron Beam Additive Manufacturing
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
931
938
.
88.
Colegrove
,
P. A.
,
Martina
,
F.
,
Roy
,
M. J.
,
Szost
,
B. A.
,
Terzi
,
S.
,
Williams
,
S. W.
,
Withers
,
P. J.
, and
Jarvis
,
D.
,
2014
, “
High Pressure Interpass Rolling of Wire+ arc Additively Manufactured Titanium Components
,”
Adv. Mater. Res.
,
996
, pp.
694
700
.
89.
Teng
,
C.
,
Gong
,
H.
,
Szabo
,
A.
,
Dilip
,
J.
,
Ashby
,
K.
,
Zhang
,
S.
,
Patil
,
N.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Simulating Melt Pool Shape and Lack of Fusion Porosity for Selective Laser Melting of Cobalt Chromium Components
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011009
.
90.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H. C.
,
Brooks
,
J. W.
, and
Attallah
,
M. M.
,
2015
, “
On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
.
91.
Lu
,
X.
,
Lin
,
X.
,
Chiumenti
,
M.
,
Cervera
,
M.
,
Hu
,
Y.
,
Ji
,
X.
,
Ma
,
L.
,
Yang
,
H.
, and
Huang
,
W.
,
2019
, “
Residual Stress and Distortion of Rectangular and S-Shaped Ti-6Al-4V Parts by Directed Energy Deposition: Modelling and Experimental Calibration
,”
Addit. Manuf.
26
,
166
179
.
92.
Jayanath
,
S.
, and
Achuthan
,
A.
,
2018
, “
A Computationally Efficient Finite Element Framework to Simulate Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041009
.
93.
Lyu
,
J.
, and
Manoochehri
,
S.
,
2018
, “
Modeling Machine Motion and Process Parameter Errors for Improving Dimensional Accuracy of Fused Deposition Modeling Machines
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121012
.
You do not currently have access to this content.