Trochoidal (TR) tool paths have been a popular means in high-speed machining for slot cutting, owing to its unique way of cyclically advancing the tool to avoid the situation of a full tool engagement angle suffered by the conventional type of slot cutting. However, advantageous in lowering the tool engagement angle, they sacrifice in machining efficiency—to limit the tool engagement angle, the step distance has to be carefully controlled, thus resulting in a much longer total machining time. Toward the objective of improving the machining efficiency, in this paper, we propose a new type of TR tool path for milling an arbitrary curved slot. For our new type of TR tool path, within each TR cycle, rather than moving circularly, the tool moves in a particular way such that the material removal rate is maximized while the given maximum engagement angle is fully respected. While this type of TR tool path works perfectly only for circular slots (including straight ones), by means of an adaptive decomposition and then a novel iso-arc-length mapping scheme, it is successfully applied to any general arbitrarily curved slot. Our experiments have confirmed that, when compared with the conventional TR tool paths, the proposed new type of TR tool path is able to significantly reduce the total machining time by as much as 25%, without sacrificing the tool wear.

References

1.
Held
,
M.
,
1991
, “
A Geometry-Based Investigation of the Tool Path Generation for Zigzag Pocket Machining
,”
Visual Comput.
,
7
(
5–6
), pp.
296
308
.
2.
Held
,
M.
,
Lukács
,
G.
, and
Andor
,
L.
,
1994
, “
Pocket Machining Based on Contour-Parallel Tool Paths Generated by Means of Proximity Maps
,”
Comput. Aided Des.
,
26
(
3
), pp.
189
203
.
3.
Xiong
,
Z. H.
,
Zhuang
,
C. G.
, and
Ding
,
H.
,
2011
, “
Curvilinear Tool Path Generation for Pocket Machining
,”
Proc. Inst. Mech. Eng.
,
225
(
4
), pp.
483
495
.
4.
Elber
,
G.
,
Cohen
,
E.
, and
Drake
,
S.
,
2005
, “
MATHSM: Medial Axis Transform Toward High Speed Machining of Pockets
,”
Comput. Aided Des.
,
37
(
2
), pp.
241
250
.
5.
Rauch
,
M.
, and
Hascoet
,
J.-Y.
,
2007
, “
Rough Pocket Milling With Trochoidal and Plunging Strategies
,”
Int. J. Mach. Machinabil. Mater.
,
2
(
2
), pp.
161
175
.
6.
Ferreira
,
J. C.
, and
Ochoa
,
D. M.
,
2013
, “
A Method for Generating Trochoidal Tool Paths for 2½D Pocket Milling Process Planning With Multiple Tools
,”
Proc. Inst. Mech. Eng.
,
227
(
9
), pp.
1287
1298
.
7.
Ibaraki
,
S.
,
Yamaji
,
I.
, and
Matsubara
,
A.
,
2010
, “
On the Removal of Critical Cutting Regions by Trochoidal Grooving
,”
Precis. Eng.
,
34
(
3
), pp.
467
473
.
8.
Pleta
,
A.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2014
, “
Investigation of Trochoidal Milling in Nickel-Based Superalloy Inconel 738 and Comparison With End Milling
,”
ASME
Paper No. MSEC2014-4151.
9.
Otkur
,
M.
, and
Lazoglu
,
I.
,
2007
, “
Trochoidal Milling
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1324
1332
.
10.
Wu
,
B.
,
Yan
,
X.
,
Luo
,
M.
, and
Gao
,
G.
,
2013
, “
Cutting Force Prediction for Circular End Milling Process
,”
Chin. J. Aeronaut.
,
26
(
4
), pp.
1057
1063
.
11.
Pleta
,
A.
, and
Mears
,
L.
,
2016
, “
Cutting Force Investigation of Trochoidal Milling in Nickel-Based Superalloy
,”
Proc. Manuf.
,
5
, pp.
1348
1356
.https://core.ac.uk/download/pdf/81999015.pdf
12.
Pleta
,
A.
,
Niaki
,
F. A.
, and
Mears
,
L.
,
2017
, “
Investigation of Chip Thickness and Force Modelling of Trochoidal Milling
,” Proc. Manuf.,
10
, pp. 612–621.
13.
Kardes
,
N.
, and
Altintas
,
Y.
,
2007
, “
Mechanics and Dynamics of the Circular Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
21
31
.
14.
Wu
,
S.
,
Ma
,
W.
,
Li
,
B.
, and
Wang
,
C.
,
2016
, “
Trochoidal Machining for the High-Speed Milling of Pockets
,”
J. Mater. Process. Technol.
,
233
, pp.
29
43
.
15.
Shixiong
,
W. U.
,
Wei
,
M. A.
,
Bai
,
H.
,
Wang
,
C.
, and
Song
,
Y.
,
2017
, “
Engagement Angle Modeling for Multiple-Circle Continuous Machining and Its Application in the Pocket Machining
,”
Chin. J. Mech. Eng.
,
30
(
2
), pp.
256
271
.https://link.springer.com/article/10.1007/s10033-017-0092-6
16.
Rauch
,
M.
,
Duc
,
E.
, and
Hascoet
,
J. Y.
,
2009
, “
Improving Trochoidal Tool Paths Generation and Implementation Using Process Constraints Modelling
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
375
383
.
17.
Sai
,
L.
,
Bouzid
,
W.
, and
Zghal
,
A.
,
2008
, “
Chip Thickness Analysis for Different Tool Motions: For Adaptive Feed Rate
,”
J. Mater. Process. Technol.
,
204
(
1
), pp.
213
220
.
18.
Wang
,
Q. H.
,
Wang
,
S.
,
Jiang
,
F.
, and
Li
,
J. R.
,
2016
, “
Adaptive Trochoidal Toolpath for Complex Pockets Machining
,”
Int. J. Prod. Res.
,
54
(
20
), pp.
5976
5989
.
19.
Yan
,
R.
,
Li
,
H.
,
Peng
,
F. Y.
,
Tang
,
X.
,
Xu
,
J.
, and
Zeng
,
H.
,
2017
, “
Stability Prediction and Step Optimization of Trochoidal Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091006
.
20.
Salehi
,
M.
,
Blum
,
M.
,
Fath
,
B.
,
Akyol
,
T.
,
Haas
,
R.
, and
Ovtcharova
,
J.
,
2016
, “
Epicycloidal Versus Trochoidal Milling-Comparison of Cutting Force, Tool Tip Vibration, and Machining Cycle Time
,”
Proc. CIRP
,
46
, pp.
230
233
.
21.
Li
,
S.
,
Wang
,
X.
,
Xie
,
L.
,
Pang
,
S.
,
Peng
,
S.
,
Liang
,
Z.
, and
Jiao
,
L.
,
2015
, “
The Milling–Milling Machining Method and Its Realization
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
1151
1161
.
22.
Yuwen
,
S.
,
Dongming
,
G.
, and
Haixia
,
W.
,
2006
, “
Iso-Parametric Tool Path Generation From Triangular Meshes for Free-Form Surface Machining
,”
Int. J. Adv. Manuf. Technol.
,
28
(
7–8
), pp.
721
726
.
23.
He
,
W.
,
Lei
,
M.
, and
Bin
,
H.
,
2009
, “
Iso-Parametric CNC Tool Path Optimization Based on Adaptive Grid Generation
,”
Int. J. Adv. Manuf. Technol.
,
41
(
5–6
), pp.
538
548
.
24.
Lin
,
R.-S.
, and
Koren
,
Y.
,
1996
, “
Efficient Tool-Path Planning for Machining Free-Form Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
118
(
1
), pp.
20
28
.
You do not currently have access to this content.