Micropencil grinding tools (MPGTs) are micromachining tools that use superabrasives like diamond and cubic boron nitride (cBN) grits to manufacture complex microstructures in a broad range of hard and brittle materials. MPGTs suffer from a rather low tool life, when compared to other more established microprocessing methods. It was documented that when used on hardened steel workpieces, MPGTs suffer from a large amount of adhesions, mostly located at the pivot point of the tool. These adhesions lead to the clogging of the abrasive layer and ultimately in tool failure. Another problem this machining process suffers from is the formation of substructures (smaller channels inside the microchannels). The pivot is usually less prone to abrasive wear, has higher protrusion, and is therefore responsible for the deepest substructures. These substructures can easily take up half the depth of cut, obstructing the function of machined microchannels—it is one of the major flaws of this micromachining process. A micro-electrical discharge machining method (μEDM) can solve these issues by manufacturing a cavity at the pivot of these tools. A novel method that uses measurement probes to position the substrate above the μEDM electrode is implemented and a parameter study to determine the cavity manufacturing parameters is conducted for substrates with diameters < 40 μm. The goal is to demonstrate the first ever complete and reliable manufacturing process for MPGTs with a cavity and to demonstrate the advantages they provide in a machining process when compared to regular MPGTs.

References

1.
Engmann
,
J.
,
2011
,
Galvanisch Gebundene Mikroschleifstifte: Entwicklung, Herstellung Und Einsatz
,
Technische Universität
,
Kaiserslautern, Germany
.
2.
Liao
,
Y.-S.
,
Chen
,
S.-T.
,
Lin
,
C.-S.
, and
Chuang
,
T.-J.
,
2005
, “
Fabrication of High Aspect Ratio Microstructure Arrays by Micro Reverse Wire-EDM
,”
J. Micromech. Microeng.
,
15
(
8
), pp.
1547
1555
.
3.
Schlautmann
,
S.
,
Wensink
,
H.
,
Schasfoort
,
R.
,
Elwenspoek
,
M.
, and
Berg
,
A. V. D.
,
2001
, “
Powder-Blasting Technology as an Alternative Tool for Microfabrication of Capillary Electrophoresis Chips With Integrated Conductivity Sensors
,”
J. Micromech. Microeng.
,
11
(4), pp. 386–389.
4.
Lacharme
,
F.
, and
Gijs
,
M. A. M.
,
2006
, “
Pressure Injection in Continuous Sample Flow Electrophoresis Microchips
,”
Sens. Actuators B: Chem.
,
117
(
2
), pp.
384
390
.
5.
Wensink
,
H.
,
2002
,
Fabrication of Microstructures by Powder Blasting
,
University of Twente
,
Enschede, The Netherlands
.
6.
Kirsch
,
B.
,
Bohley
,
M.
,
Arrabiyeh
,
P. A.
, and
Aurich
,
J. C.
,
2017
, “
Application of Ultra-Small Micro Grinding and Micro Milling Tools: Possibilities and Limitations
,”
Micromachines
,
8
(
9
), p.
261
.
7.
Aziz
,
M.
,
Ohnishi
,
O.
, and
Onikura
,
H.
,
2012
, “
Innovative Micro Hole Machining With Minimum Burr Formation by the Use of Newly Developed Micro Compound Tool
,”
J. Manuf. Processes
,
14
(
3
), pp.
224
232
.
8.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.
,
55
(
2
), pp.
745
768
.
9.
Arrabiyeh
,
P. A.
,
Kirsch
,
B.
, and
Aurich
,
J. C.
,
2017
, “
Development of Micro Pencil Grinding Tools Via an Electroless Plating Process
,”
ASME J. Micro Nano-Manuf.
,
5
(
1
), p.
011002
.
10.
Hoffmeister
,
H.-W.
, and
Hlavac
,
M.
,
2002
, “
Schleifen Von Mikrostrukturen
,”
Tagungsband Des 10. Feinbearbeitungskolloqiums Braunschweig
, Braunchweig, Germany, Oct. 7–9, pp.
7
24
.
11.
Feng
,
J.
,
Chen
,
P.
, and
Ni
,
J.
,
2012
, “
Prediction of Surface Generation in Microgrinding of Ceramic Materials by Coupled Trajectory and Finite Element Analysis
,”
Finite Elem. Anal. Des.
,
57
, pp.
67
80
.
12.
Park
,
H.-K.
,
Onikura
,
H.
,
Ohnishi
,
O.
, and
Sharifuddin
,
A.
,
2010
, “
Development of Micro-Diamond Tools Through Electroless Composite Plating and Investigation Into Micro-Machining Characteristics
,”
Precis. Eng.
,
34
(
3
), pp.
376
386
.
13.
Morgan
,
C. J.
,
Vallance
,
R. R.
, and
Marsh
,
E. R.
,
2007
, “
Specific Grinding Energy While Microgrinding Tungsten Carbide With Polycrystalline Diamond Micro Tools
,”
International Conference on Micromanufacturing
,
Clemson, SC
,
Sept. 10–13
.
14.
Arrabiyeh
,
P. A.
,
Bohley
,
M.
,
Ströer
,
F.
,
Kirsch
,
B.
,
Seewig
,
J.
, and
Aurich
,
J. C.
,
2017
, “
Experimental Analysis for the Use of Sodium Dodecyl Sulfate as a Soluble Metal Cutting Fluid for Micromachining With Electroless-Plated Micropencil Grinding Tools
,”
Inventions
,
2
(
4
), p.
29
.
15.
Setti
,
D.
,
Kirsch
,
B.
,
Arrabiyeh
,
P. A.
, and
Aurich
,
J. C.
,
2018
, “
Visualization of Geometrical Deviations in Micro Grinding by Kinematic Simulations
,”
ASME
Paper No. MSEC2018-6576.
16.
Masuzawa
,
T.
,
2000
, “
State of the Art of Micro Machining
,”
CIRP Ann.
,
49
(
2
), pp.
473
488
.
17.
Haefeli Diamantwerkzeufabrik AG
,
2017
, “
Product Catalog for Internal Grinding
,” Haefeli Diamantwerkzeufabrik AG, Zurich, Switzerland.
18.
Zhang
,
Q.
,
2004
, “
Study on Technology of Ultrasonic Vibration Aided Electrical Discharge Machining in Gas
,”
J. Mater. Process. Technol.
,
149
, pp. 640–644.
19.
Mahendran
,
S.
,
Devarajan
,
R.
,
Nagarajan
,
T.
, and
Majdi
,
A.
,
2010
, “
A Review of Micro-EDM
,”
International Multiconference of Engineers and Computer Scientists
(
IMECS
),
College Station, TX
,
June 18–22
.http://www.iaeng.org/publication/IMECS2010/IMECS2010_pp981-986.pdf
20.
DiBitonto
,
D. D.
,
Eubank
,
P. T.
,
Patel
,
M. R.
, and
Barrufet
,
M. A.
,
1989
, “
Theoretical Models of the Electrical Discharge Machining Process—Part I: A Simple Cathode Erosion Model
,”
J. Appl. Phys.
,
66
(
9
), pp.
4095
4103
.
21.
Fonda
,
P.
,
Wang
,
Z.
,
Yamazaki
,
K.
, and
Akutsu
,
Y.
,
2008
, “
A Fundamental Study on Ti–6Al–4V's Thermal and Electrical Properties and Their Relation to EDM Productivity
,”
J. Mater. Process. Technol.
,
202
(
1–3
), pp.
583
589
.
22.
Mohri
,
N.
,
Fukuzawa
,
Y.
,
Tani
,
T.
,
Saito
,
N.
, and
Furutani
,
K.
,
1996
, “
Assisting Electrode Method for Machining Insulating Ceramics
,”
CIRP Ann.
,
45
(
1
), pp.
201
204
.
23.
Mohri
,
N.
,
Fukuzawa
,
Y.
,
Tani
,
T.
, and
Toshio
,
S.
,
2002
, “
Some Considerations to Machining Characteristics of Insulating Ceramics-Towards Practical Use in Industry
,”
CIRP Ann.
,
58
(
1
), pp.
161
164
.
24.
Schubert
,
A.
,
Zeidler
,
H.
,
Hahn
,
M.
,
Hackert-Oschätzchen
,
M.
, and
Schneider
,
J.
,
2013
, “
Micro-EDM Milling of Electrically Nonconducting Zirconia Ceramics
,”
Procedia CIRP
,
6
, pp.
297
302
.
25.
Egashira
,
K.
,
Hosono
,
S.
,
Takemoto
,
S.
, and
Masao
,
Y.
,
2011
, “
Fabrication and Cutting Performance of Cemented Tungsten Carbide Micro-Cutting Tools
,”
Precis. Eng.
,
35
(
4
), pp.
547
553
.
26.
Yu
,
Z. Y.
,
Zhang
,
Y.
,
Li
,
J.
,
Luan
,
J.
,
Zhao
,
F.
, and
Guo
,
D.
,
2009
, “
High Aspect Ratio Micro-Hole Drilling Aided With Ultrasonic Vibration and Planetary Movement of Electrode by Micro-EDM
,”
CIRP Ann.
,
58
(
1
), pp.
213
216
.
27.
Aurich
,
J. C.
,
Engmann
,
J.
,
Schüler
,
G. M.
, and
Walk
,
M.
,
2010
, “
Micro-EDM-Device for Machining Tungsten Carbide in a Desktop Machine Tool
,”
Tenth International Conference of the European Society for Precision Engineering and Nanotechnology
,
Delft, The Netherlands
,
May 31–June 4
, pp.
324
327
.
28.
Aurich
,
J. C.
,
Engmann
,
J.
, and
Walk
,
M.
,
2010
, “
Zerspanen Mit Mikroschleifstiften: Zylindrische Und Formoptimierte Mikroschaftschleifstifte Bei Der Hartmetallzerspanung—Untersuchung Und Vergleich
,”
Wt Werkstattstechnik
,
100
(
11/12
), pp. 832–836.
29.
DIN
,
1991
, “
Hard metals; Vickers Hardness Test
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 3878.
30.
Aurich
,
J. C.
,
Reichenbach
,
I. G.
, and
Schüler
,
G. M.
,
2012
, “
Manufacture and Application of Ultra-Small Micro End Mills
,”
CIRP Ann.
,
61
(
1
), pp.
83
86
.
31.
Patel
,
M. R.
,
Barrufet
,
M. A.
,
Eubank
,
P. T.
, and
DiBitonto
,
D. D.
,
1989
, “
Theoretical Models of the Electrical Discharge Machining Process—Part II: The Anode Erosion Model
,”
J. Appl. Phys.
,
66
(
9
), pp.
4104
4111
.
32.
Ferreira
,
J. C.
,
2007
, “
A Study of Die Helical Thread Cavity Surface Finish Made by Cu-W Electrodes With Planetary EDM
,”
Int. J. Adv. Manuf. Technol.
,
34
(
11–12
), pp.
1120
1132
.
33.
Ekmekci
,
B.
,
2007
, “
Residual Stresses and White Layer in Electric Discharge Machining (EDM)
,”
Appl. Surf. Sci.
,
253
(
23
), pp.
9234
9240
.
34.
Luo
,
Y. F.
,
1998
, “
An Evaluation of Spark Mobility in Electrical Discharge Machining
,”
IEEE Trans. Plasma Sci.
,
26
(
3
), pp.
1010
1016
.
35.
Walk
,
M.
,
2016
,
Integriertes Desktopmaschinensystem Für Die Herstellung Und Anwendung Ultrakleiner Mikroschleifwerkzeuge
,
Technische Universität
,
Kaiserslautern, Germany
.
36.
Tanabe
,
R.
,
Ito
,
Y.
,
Mohri
,
N.
, and
Masuzawa
,
T.
,
2016
, “
Development of Peeling Tools With Sub-50 μm Cores by Zinc Electroplating and Their Application to Micro-EDM
,”
CIRP Ann.
,
65
(
1
), pp.
221
224
.
37.
Shabgard
,
M.
,
Kakolvand
,
H.
,
Seyedzavvar
,
M.
, and
Shotorbani
,
R. M.
,
2011
, “
Ultrasonic Assisted EDM: Effect of the Workpiece Vibration in the Machining Characteristics of FW4 Welded Metal
,”
Front. Mech. Eng.
,
43
(
13
), pp. 419–428.
38.
Bamberg
,
E.
, and
Heamawatanachai
,
S.
,
2009
, “
Orbital Electrode Actuation to Improve Efficiency of Drilling Micro-Holes by Micro-EDM
,”
J. Mater. Process. Technol.
,
209
(
4
), pp.
1826
1834
.
39.
Schmidt
,
K.
,
2006
,
Mikrofräswerkzeuge Aus Hartmetall
,
University of Kaiserslautern, Kaiserslautern, Germany
.
40.
DIN,
2006
, “
Metallic Materials—Vickers Hardness Test—Part 1: Test Method
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 6507-1:2006.
41.
Zeidler
,
H.
,
2012
,
Schwingungsunterstützte Mikro-Funkenerosion
,
Verlag Wissenschaftliche Scripten
,
Auerbach, Germany
.
You do not currently have access to this content.